|
Size: 1253
Comment: added gekeler's papers
|
Size: 536766
Comment:
|
| Deletions are marked like this. | Additions are marked like this. |
| Line 1: | Line 1: |
| = Sage Days 21: Function Fields Reading List = * Gekeler and Nonnengardt, [[attachment:gekeler-nonnengardt.pdf|Fundamental domains of some arithmetic groups over function fields]]. Internat. J. Math. 6 (1995), no. 5, 689--708. * Gekeler and Reversat, [[attachment:gekeler-reversat.pdf|Jacobians of Drinfeld modular curves]]. J. Reine Angew. Math. 476 (1996), 27--93. * Papikian, [[attachment:papikian-aws-2000.pdf|Computation of Heegner Points for Function Fields]]. Notes from the 2000 Arizona Winter School (A note from the author: "Please keep in mind that I wrote those notes when I was just learning the subject, so they might contain some mistakes.") * Ulmer, [[attachment:ulmer-ff-rank.pdf|Elliptic curves with large rank over function fields]]. Ann. of Math. (2) 155 (2002), no. 1, 295--315. * Ulmer, [[attachment:ulmer-nf-ff.pdf|Elliptic curves and analogies between number fields and function fields]]. Heegner points and Rankin $L$-series, 285--315, Math. Sci. Res. Inst. Publ., 49, Cambridge Univ. Press, Cambridge, 2004. * Ulmer, [[attachment:ulmer-invent-math-2007.pdf|$L$-functions with large analytic rank and abelian varieties with large algebraic rank over function fields]]. Invent. Math. 167 (2007), no. 2, 379--408. |
%PDF-1.4 %ÐÔÅØ 3 0 obj << /Length 3036 /Filter /FlateDecode >> stream xÚ¥ZÙrÛÈ}×W°æ ª"½/òÃØ ÏLj²*qí$d¸È hÙÓ Ø¤É4Ý·ÏÝνÐË«?½æfAii¥d»åºTj! )9±õâCñúÚâ¸[WÛzwÍiÑUë%ײøË~[5»C¸Ùß ßwûm ·Íî®Þ¬ÃÝß÷ø¥Åú¸©Ú0òêØ~qëÕëO7?C» ¤´ÄR/ฦ%øåAWmãöã¼ø[µÙÄ÷ÈBVÿÚR[ÆK®JFDxï§ÛC×V׫® oQ¼%°_0ùßׯ8P¼Xíwxó¸êÜ-+îHÁ ®{ü}.ª¶é ¶u×\/i± cãí}»?>ƹ ¢,a÷¥-bAÌѤx~Þü¥n µVNjN¡$#èð"Ë ®¤.I$a ÓÉ<^²×q!ì'J£¡èȪ0ës~;&ɤqRº+9 .îÕeVá%¦ð Óòz©.Þx@¿8 @ÀÎ:´h\Â&KHR ®ú5>Â(2ûÀâ8ã$BFt8M&RAâ*+±5v\HÒ ÜÓ5 ÖëÔp[ £n tÕÕë03Úº=®þzsõùbY² A!`TIJÅj{õáY¬ñðg Î¥]<ù©Û ÄßÍâÝÕ?¯^z/©úe)YôÌ BíOäüÛIÖ=ÔÁj¥2°@( ³^¶Çª[Þ4 lY SÕuD3A1ØÇ°vnsãèïÝ:,W¹9ú¡ÃÍù¡ ~x¢t'p\AõEÔJn/ ׯ$,¢¤SO ¯ Ns²{3õBÑÍî>îs[5ß%ñ%qã2qsXÃÈ ÒéQÐɸ®?*vu¯ û`4Ä7Í l Zì¯iqwz2j ±æIx$ÿ¸. Àæì¼. ßÖº}ÆaÀL°yä³3}²Ñ·9ˬbÄíeÖt4+¤/çì+çR¸ ÅGÊÅmóXµ]ÓÕ?± wÕ©Ei§SÄé½s§p×ÁñrCäÔFÎO7GhÌçWU Uç/¨ 9Y(1IYÑû\Àð,Þ]õÏ¥?GO< ôøØÖ«æPo¾ å êQG!4L±ÿÇñû4¨/!É( éPV ËÕ~ ¹z]þ^dá!ôéu)e`.Ê@6qiO,½ ¢©cQ È!Í£M¡iIa½_4_ à>åàÇ»3ll¼s<-&«iSj9õïý\ðëÅ@+¬4üWÄÓ .4FôAêsf'!~2ĺËHÎx©ÈÊIÎõLòÉSÉs§åpô9!JÌåLÞG:±¢v9M0ªÿø%w Q²2ýáóN8¡É* ,P<w(!°Q>£ð"ܺÞíù±Q`¬ðnØ`z4³O>q²Z7«¸«a º&Æ[ø ,Å9/÷ ¬)}dæí/θ½f¦øC ñùB £ÍP:±ùÜ1KÐÔæËpDJ¦ <[F}ãÓácé±r÷¬ð5Gx ¦µ+,6Ca¡Ù(³p Ô35Iæ|½ä Qc 6%Îþ+Ç!ü^g yé¤,3U+)g1%'43ìúÑü|Üw£¦È%CêÒMÍí}Îv(R Ôãïrjýkaî.s6rãâÉÀGIsÓ>«3Õæn¹ivµcL ¨úâÎç ªa- B»å¸GmkÖuµÊ£4úÀfF«Ì:%?%QSÇA:¡êbØ&%UC\Ø{R ¹¶UðEãê,ÚÃz³ñÇý"Ò¤JxÏDs}îzö´ Lb% {äsUÖA¬QÃÎ"Ì0Ëá0¨A¶'W&Ð 5;0O+qSb¸Ãõ~wÆ=ܹ/BNI+ÔÀÅ»fÛlªÖs/lîUàöTànF¸9Õ."»VN¯ÚÛÅoë¹F/Ü' &õ'G ÚûsÛ±L-ö§F6&ÂïÒÚ!è3aC3È;d÷§Aù^I>?c$ñÂuÚìY¨òFs:ZØå i¨Ò\ã ü@ñ»Ú72ÆQ*=Óø}[=><üô =£xÛw÷ ëã.ÍÚþ· ?Æb¢g²n , +¨ Í¿Ï$d[.¬ à¦êT-Kj Á^ùòὸ)àB¤é ôÛ»èüþÁtïVÇÃãÁf!£9¹S: "¬, M`íÑ áæàüzI©aõû{;ür¤ CÞÑCÆÝ+º@FUå×Ñ÷³ÜÝm0ùMý»uS·Î)éy"¬8 1E²Páú«*>=ÞËü ,Ĭê81âyá2[ T_ZI§L8S8èávÙla¶¥ºìzZ©ë p]1ô%uylN»¾0gEs×co¶Õ}ìðQ¥K;7²Ü4Þ_©ÇÒøplÿS~xq\óÒçÂ$PÕóîh¨Mùjp5£ Uø¹mlcê¼ ¿õú¾>øHALüÐ)à |
