Sage Days 18 Coding Sprint Projects

Elliptic curves over function fields

This project will include the following topics:

People: Sal Baig, William Stein, David Roe, Ken Ribet, Kiran Kedlaya, Robert Bradshaw, Victor Miller (S-unit equations), Thomas Barnet-Lamb

Implement computation of the 3-Selmer rank of an elliptic curve over QQ

Some projects:

People: Robert Miller, William Stein, Victor Miller, Jeechul Woo (Noam's student; around only Thu, Fri)

Compute statistics about distribution of Heegner divisors and Kolyvagin divisors modulo primes p

People: William Stein, Dimitar Jetchev, Drew Sutherland, Mirela Ciperiani, Ken Ribet, Victor Miller

Create a table of images of Galois representations, for elliptic curves

The goals of this project are:

People: Drew Sutherland, Ken Ribet, William Stein, Kiran Kedlaya, David Roe

Fast computation of Heegner points

People: William Stein, Robert Bradshaw, Jen Balakrishnan

Implement code to compute the asymptotic distribution of Kolyvagin classes

This will be based on Jared Weinstein's talk.

People: Jared Weinstein, Mirela Ciperiani, William Stein

Verify Kolyvagin's conjecture for a specific rank 3 curve

This is done for examples of rank 2 curves. Nobody has ever checked that Kolyvagin's conjecture holds for a rank 3 curve.

People: William Stein, Dimitar Jetchev, Victor Miller (sparse linear algebra), Jen Balakrishnan

Implement an algorithm in Sage to compute Stark-Heegner points

There is a new algorithm due to Darmon and Pollack for computing Stark Heegner point using overconvergent modular symbols. So this project would involve:

People: Matthew Greenberg, Cameron Frank, Kiran Kedlaya, Robert Pollack, Avner Ash, David Roe, Jay Pottharst, Thomas Barnet-Lamb

Compute the higher Heegner point y_5 on the curve 389a provably correctly

People: Robert Bradshaw, William Stein, Jen Balakrishnan

Compute a Heegner point on the Jacobian of a genus 2 curve

People: Noam Elkies, virtually via his comments in this thread.

Visibility of Kolyvagin Classes

On the one hand, one of Kolyvagin's suite of conjectures is that the classes he constructs out of Heegner points ought to generate the entirety of Sha(E/K). On the other hand each element of Sha(E/K) is "visible" in some other abelian variety, in the sense of Mazur (see for instance http://www.williamstein.org/home/was/www/home/wstein/www/papers/visibility_of_sha/). I wonder if the Kolyvagin classes d(n) contributing to Sha become visible in abelian varieties in some *systematic* way; ie, in a modular Jacobian of possibly higher level. There are already some examples out there of computation with visibility and computation with Kolyvagin classes, so maybe we can gather some data.

People: Jared Weinstein, Mirela Ciperiani, William Stein, Dimitar Jetchev, Ken Ribet, Barry Mazur

Find an algorithm to decide if y_{p^n} is divisible by (g-1) and run it for a curve of rank >= 2

Consider the Heegner y_{p^n} over the anticyclotomic tower for a rank >= 2 curve, Sha trivial, etc.

People: Mirela Ciperiani, William Stein, Barry Mazur, Jay Pottharst

Compute Frobenius eigenvalues for a bunch of curves to illustrate Katz-Sarnak

People: Barry Mazur, Kiran Kedlaya, Thomas Barnet-Lamb, David Harvey, Mirela Ciperiani, Sal Baig (lots of possibly relevant data over function fields)

Sage Tutorials

We would like to have a sequence of informal Sage tutorials on the following topics: