Differences between revisions 94 and 136 (spanning 42 versions)
Revision 94 as of 2017-07-20 22:09:50
Size: 8965
Editor: slelievre
Comment: Claim #23376.
Revision 136 as of 2017-07-21 18:59:02
Size: 10740
Editor: aly.deines
Comment:
Deletions are marked like this. Additions are marked like this.
Line 17: Line 17:
  * Hermite normal form [[https://trac.sagemath.org/ticket/23486|#23486]] (ready for review), lattices in p-adic vector spaces
  * Design new parents (ZpLCR, ZpLCA) for p-adics handled with lattice precision
  * Hermite normal form [[https://trac.sagemath.org/ticket/23486|#23486]] (ready for review)
  * Lattices in p-adic vector spaces: this is handled by the generic code for modules over PID (after the implementation of HNF above and this simple ticket [[https://trac.sagemath.org/ticket/23503|#23503]])
  * Design a framework for lattice precision [[https://trac.sagemath.org/ticket/23505|#23505]]
Line 21: Line 22:
 * Implementation of Gröbner bases and tropical Gröbner bases algorithm (F4, F5, FGLM), doctest and submission (Tristan)  * Implementation of Gröbner bases and tropical Gröbner bases algorithm (F4, F5, FGLM), doctest and submission (Tristan). A ticket on F5 has been posted ([[https://trac.sagemath.org/ticket/23461|#23461]], needs review). A ticket on a Tropical F5 is in progress ([[https://trac.sagemath.org/ticket/23501|#23501]]).
Line 36: Line 37:
 * nth roots, square roots that create extensions (extend=True as for integers) [[https://trac.sagemath.org/ticket/12567|#12567]] (Marc, Kevin)  * nth roots, square roots that create extensions (extend=True as for integers) [[https://trac.sagemath.org/ticket/12567|#12567]] (Marc, David)
Line 38: Line 39:
 * Gauss sums via the Gross-Koblitz formula, which uses code on p-adic gamma functions [[https://trac.sagemath.org/ticket/23456|#23456]] (Adriana and Ander) (Found and fixed a small mistake, still needs review)  * --(Gauss sums via the Gross-Koblitz formula, which uses code on p-adic gamma functions [[https://trac.sagemath.org/ticket/23456|#23456]] (Adriana and Ander))--
Line 55: Line 56:
== Non Beginner Sage tickets needing review ==

  * --([[https://trac.sagemath.org/ticket/23204|#23204]] (Aly) )--
  * [[https://trac.sagemath.org/ticket/23203|#23203]] (Claire)
  * [[https://trac.sagemath.org/ticket/23185|#23185]]
  * [[https://trac.sagemath.org/ticket/23190|#23190]]
  * [[https://trac.sagemath.org/ticket/23484|#23484]]
  * [[https://trac.sagemath.org/ticket/23461|#23461]]
  * [[https://trac.sagemath.org/ticket/20265|#20265]]

Line 57: Line 69:
 * Change root_field to return a p-adic field [[https://trac.sagemath.org/ticket/14893|#14893]], --([[https://trac.sagemath.org/ticket/20244|#20244]])-- (Aly)  * Change root_field to return a p-adic field [[https://trac.sagemath.org/ticket/14893|#14893]], --([[https://trac.sagemath.org/ticket/20073|#20073]])--,--([[https://trac.sagemath.org/ticket/20244|#20244]])-- (Aly)
 * Add an `exact_ring` method for p-adic rings and fields [[https://trac.sagemath.org/ticket/23507|#23507]] (Adele)
Line 64: Line 77:
  * [[https://trac.sagemath.org/ticket/23185|#23185]] (Sara)   * [[https://trac.sagemath.org/ticket/23185|#23185]] (Need to wait until [[https://trac.sagemath.org/ticket/23204|#23204]] is done -- Sara)
Line 69: Line 82:
  * [[https://trac.sagemath.org/ticket/23479|#23479]] (Sara)
    * This one needs to be re-reviewed due to an update
  * --([[https://trac.sagemath.org/ticket/23473|#23473]] (This tickets now needs a review ! -- David A.) (Freda))--
  * --([[https://trac.sagemath.org/ticket/23456|#23456]] (Adele))--
  * --([[https://trac.sagemath.org/ticket/23495|#23495]] (Adele))--
  * [[https://trac.sagemath.org/ticket/23499|#23499]]
  * [[https://trac.sagemath.org/ticket/23193|#23193]] (Ben)
  * [[https://trac.sagemath.org/ticket/23194|#23194]]
  * [[https://trac.sagemath.org/ticket/23235|#23235]]
Line 70: Line 92:
  * [[https://trac.sagemath.org/ticket/23473|#23473]] (David A.)
  * [[https://trac.sagemath.org/ticket/23456|#23456]] (Adele)
  * --([[https://trac.sagemath.org/ticket/23495|#23495]] (Adele))--
  * --([[https://trac.sagemath.org/ticket/23503|#23503]] (Angie))--
  * [[https://trac.sagemath.org/ticket/12657|#12657]]
  * --([[https://trac.sagemath.org/ticket/20308|#20308]] (David A.))--
  * --([[https://trac.sagemath.org/ticket/23509|#23509]] (Sara))--
Line 86: Line 108:
 * Display Hecke eigenvalues in terms of an integral basis. See: [[https://github.com/LMFDB/lmfdb/issues/975 | #975]], pull request [[https://github.com/LMFDB/lmfdb/pull/2197 | #2197]] (Edgar, Sam Schiavone, Michael Musty)
Line 96: Line 119:
  * --(Display Hecke eigenvalues in terms of an integral basis. See: [[https://github.com/LMFDB/lmfdb/issues/975 | #975]] (Edgar, Sam Schiavone, Michael Musty))--

A list of tickets we're working on can be found here. If you work on a ticket, please add sd87 to the list of keywords so that it appears!

Most of the code for working with p-adics can be found here and here if you want to browse.

Big Sage projects

  • Add general extensions of p-adic fields in Sage #23218 (David Roe)

  • Add Julian's Mac Lane package which provides a general framework for discrete valuations to Sage #21869 (Julian)

  • Add Julian's Completion package, for general p-adic extension backed by number fields, to Sage #22956 (Julian)

  • Polynomial factorization, using Julian's Mac Lane package and/or Brian Sinclair's ticket #12561 (Ticket needs review) (Brian - meeting in UHS 115)

    • make sure simpler factoring methods are in good shape, like Hensel lifting and Panayi's root finding.
  • Lattice precision for p-adics (in particular p-adic matrices, polynomials) (Xavier)
    • Smith normal form #23450 (ready for review), determinant #23478 (ready for review)

    • Hermite normal form #23486 (ready for review)

    • Lattices in p-adic vector spaces: this is handled by the generic code for modules over PID (after the implementation of HNF above and this simple ticket #23503)

    • Design a framework for lattice precision #23505

  • Power series via p-adic templates (Adriana)
  • Linkage files for p=2 and/or using longs for the case that p^{\text{prec}} < 2^{62}

  • Implementation of Gröbner bases and tropical Gröbner bases algorithm (F4, F5, FGLM), doctest and submission (Tristan). A ticket on F5 has been posted (#23461, needs review). A ticket on a Tropical F5 is in progress (#23501).

    • We might finish reviewing the inclusion of openf4 at #18749 and patch it to avoid going through strings all the time

    • And also look at the performance of Singular, polybori, giac, ...
  • Zeta function tickets
  • Roadmap for regular models in Sage using Mac Lane package, Suchandan Pal's code and Stefan Wewers' work. (Julian)

  • Etale algebras (maybe see also ticket #21413) (Ricky)

  • For an old list of possible projects, see padics

Smallish Sage projects

  • Norms, traces, frobenius, matrix mod pn for relative p-adic extensions (David)
  • Add more black-box testing to p-adics, performance benchmarketing (Aly)
  • nth roots, square roots that create extensions (extend=True as for integers) #12567 (Marc, David)

  • Artin-Hasse exponentials #12560 (Xavier)

  • Gauss sums via the Gross-Koblitz formula, which uses code on p-adic gamma functions #23456 (Adriana and Ander)

  • Better coercion/conversion to and from residue fields (Aly, Marc)
  • Optimized implementation of Frobenius automorphism #12657 (Ander)

  • p-adic polylogarithms #20260 (Alex)

  • bug in matrix of Frobenius when p = 3 #11960 (Jen)

  • Switching to exact defining polynomials for p-adic extensions #23331 (David)

  • Change p-adic constructors to not care about the base ring of a defining polynomial #18606 (David)

  • Investigate slowness in unramified extensions #23172 (Xavier)

  • Review Xavier's fast exponential code #23235 (Xavier)

  • Ray class groups and Hecke characters #15829 (Rob)

  • Add Monge-reduction for Eisenstein polynomials (first over \mathbb{Q}_p, then over unramified extensions) (Sebastian)

  • Generic zeta function method for schemes #20308 (Edgar)

  • Elliptic curve point counting over F_q using PARI #16931 #16949 (J-P Flori, Kevin)

  • Expose PARI code for Frobenius matrix on hyperelliptic curves #20309 (Marc)

  • Raise coverage of schemes/hyperelliptic_curves/monsky_washnitzer.py to 100% #15645 (Edgar)

  • Requested by Anna Haensch: A weak approximation function

Non Beginner Sage tickets needing review

Beginner Sage projects

LMFDB projects

days87/projects (last edited 2017-08-04 09:44:00 by saraedum)