Processing Math: Done
No jsMath TeX fonts found -- using unicode fonts instead.
This may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 83 and 173 (spanning 90 versions)
Revision 83 as of 2017-07-20 20:18:10
Size: 8783
Editor: cmt
Comment:
Revision 173 as of 2017-07-22 15:57:43
Size: 11509
Editor: MRupert
Comment:
Deletions are marked like this. Additions are marked like this.
Line 17: Line 17:
  * Hermite normal form [[https://trac.sagemath.org/ticket/23486|#23486]] (ready for review), lattices in p-adic vector spaces
  * Design new parents (ZpLCR, ZpLCA) for p-adics handled with lattice precision
  * Hermite normal form [[https://trac.sagemath.org/ticket/23486|#23486]] (ready for review)
  * Lattices in p-adic vector spaces: this is handled by the generic code for modules over PID (after the implementation of HNF above and --(this simple ticket [[https://trac.sagemath.org/ticket/23503|#23503]])--)
  * Design a framework for lattice precision [[https://trac.sagemath.org/ticket/23505|#23505]]
Line 21: Line 22:
 * Implementation of Gröbner bases and tropical Gröbner bases algorithm (F4, F5, FGLM), doctest and submission (Tristan)  * Implementation of Gröbner bases and tropical Gröbner bases algorithm (F4, F5, FGLM), doctest and submission (Tristan). A ticket on F5 has been posted ([[https://trac.sagemath.org/ticket/23461|#23461]], needs review). A ticket on a Tropical F5 is in progress ([[https://trac.sagemath.org/ticket/23501|#23501]]).
Line 25: Line 26:
  * [[https://trac.sagemath.org/ticket/20264|#20264]] (Edgar, Vishal Aru, Nicholas Triantafillou)   * [[https://trac.sagemath.org/ticket/20264|#20264]] (Edgar, Vishal Aru, Nicholas Triantafillou, Ricky)
Line 28: Line 29:
  * [[https://trac.sagemath.org/ticket/20308|#20308]] (Ben, David)
Line 36: Line 38:
 * nth roots, square roots that create extensions (extend=True as for integers) [[https://trac.sagemath.org/ticket/12567|#12567]] (Marc, Kevin)  * nth roots, square roots that create extensions (extend=True as for integers) [[https://trac.sagemath.org/ticket/12567|#12567]] (Marc, David)
Line 38: Line 40:
 * Gauss sums via the Gross-Koblitz formula, which uses code on p-adic gamma functions [[https://trac.sagemath.org/ticket/23456|#23456]] (Adriana and Ander) (ready for review)  * --(Gauss sums via the Gross-Koblitz formula, which uses code on p-adic gamma functions [[https://trac.sagemath.org/ticket/23456|#23456]] (Adriana and Ander))--
Line 41: Line 43:
 * p-adic polylogarithms [[https://trac.sagemath.org/ticket/20260|#20260]] (Alex)  * p-adic polylogarithms [[https://trac.sagemath.org/ticket/20260|#20260]] (Alex) Ready for review!
Line 55: Line 57:
== Non Beginner Sage tickets needing review ==

  * --([[https://trac.sagemath.org/ticket/23204|#23204]] (Aly) )--
  * [[https://trac.sagemath.org/ticket/23203|#23203]] (Claire)
  * [[https://trac.sagemath.org/ticket/23190|#23190]]
  * --([[https://trac.sagemath.org/ticket/23484|#23484]])--
  * [[https://trac.sagemath.org/ticket/23461|#23461]]
  * [[https://trac.sagemath.org/ticket/20265|#20265]]

Line 57: Line 69:
 * Change root_field to return a p-adic field [[https://trac.sagemath.org/ticket/14893|#14893]], --([[https://trac.sagemath.org/ticket/20244|#20244]])-- (Aly)  * Change root_field to return a p-adic field [[https://trac.sagemath.org/ticket/14893|#14893]], --([[https://trac.sagemath.org/ticket/20073|#20073]])--,--([[https://trac.sagemath.org/ticket/20244|#20244]])-- (Aly)
 * --(Add an `exact_ring` method for p-adic rings and fields [[https://trac.sagemath.org/ticket/23507|#23507]] (Adele))--
Line 63: Line 76:
  * [[https://trac.sagemath.org/ticket/23190|#23190]] (Adele)
  * [[https://trac.sagemath.org/ticket/23185|#23185]] (Sara)
  * [[https://trac.sagemath.org/ticket/23190|#23190]] (possible dependencies for global tests -- Adele)
  * [[https://trac.sagemath.org/ticket/23185|#23185]] (Needs work, doctests are failing)
Line 67: Line 80:
  * [[https://trac.sagemath.org/ticket/23484|#23484]] (David A.)
  * [[https://trac.sagemath.org/ticket/23376|#23376]]
  * --([[https://trac.sagemath.org/ticket/23484|#23484]] (Need to wait until [[https://trac.sagemath.org/ticket/23204|#23204]] is done -- David A.))--
  * [[https://trac.sagemath.org/ticket/23376|#23376]] (Samuel)
  * --([[https://trac.sagemath.org/ticket/23473|#23473]] (This tickets now needs a review ! -- David A.) (Freda))--
  * --([[https://trac.sagemath.org/ticket/23456|#23456]] (Adele))--
  * --([[https://trac.sagemath.org/ticket/23495|#23495]] (Adele))--
  * --([[https://trac.sagemath.org/ticket/23499|#23499]] (Adele))--
  * --([[https://trac.sagemath.org/ticket/23193|#23193]] (Freda))--
  * --([[https://trac.sagemath.org/ticket/23194|#23194]] (Edgar))--
  * --([[https://trac.sagemath.org/ticket/23235|#23235]] (Adele))--
Line 70: Line 90:
  * [[https://trac.sagemath.org/ticket/23473|#23473]]
  * [[https://trac.sagemath.org/ticket/23456|#23456]] (Adele)
  * [[https://trac.sagemath.org/ticket/23495|#23495]] (Adele)

  * --([[https://trac.sagemath.org/ticket/23503|#23503]] (Angie))--
  * [[https://trac.sagemath.org/ticket/12657|#12657]] (Sara)
  * --([[https://trac.sagemath.org/ticket/20308|#20308]] (David A.))--
  * --([[https://trac.sagemath.org/ticket/23509|#23509]] (Sara))--
  * polylogarithms [[https://trac.sagemath.org/ticket/20260|#20260]]
  * --([[https://trac.sagemath.org/ticket/23507|#23507]] (Sara))--
  * --([[https://trac.sagemath.org/ticket/23510|#23510]] (Adele))--
  * --([[https://trac.sagemath.org/ticket/23512|#23512]] (really small) (Edgar) )--
Line 84: Line 107:
 * Dirichlet characters modulo l: see https://github.com/sanni85/Dirichlet_modL (Samuele)
 * Galois representations modulo l: see https://github.com/sanni85/Mod-l-galois-representations and http://beta.lmfdb.org/Representation/Galois/ModL/ (Samuele)
 * Display Hecke eigenvalues in terms of an integral basis. See: [[https://github.com/LMFDB/lmfdb/issues/975 | #975]], pull request [[https://github.com/LMFDB/lmfdb/pull/2197 | #2197]] (Edgar, Sam Schiavone, Michael Musty)
 * Compute Galois splitting models (Ben, Angie)
Line 96: Line 119:
  * --(Display Hecke eigenvalues in terms of an integral basis. See: [[https://github.com/LMFDB/lmfdb/issues/975 | #975]] (Edgar, Sam Schiavone, Michael Musty))--
  * --(Pull request [[https://github.com/LMFDB/lmfdb/pull/2198|#2198]]: Hilbert modular forms search CM and base change, solves issues [[https://github.com/LMFDB/lmfdb/issues/1975|#1975]], [[https://github.com/LMFDB/lmfdb/issues/1972| #1972]])--
 * Yoshida lifts of Hilbert modular forms: adding function to compute, working on displaying the data (Malcolm, Samuele) https://github.com/sanni85/lmfdb/tree/paramodular_lift and Pull Request https://github.com/LMFDB/lmfdb/pull/2201
Line 103: Line 126:
  * Dirichlet characters modulo l: see https://github.com/sanni85/Dirichlet_modL (Samuele)
  * Galois representations modulo l: see https://github.com/sanni85/Mod-l-galois-representations and http://beta.lmfdb.org/Representation/Galois/ModL/ (Samuele)

A list of tickets we're working on can be found here. If you work on a ticket, please add sd87 to the list of keywords so that it appears!

Most of the code for working with p-adics can be found here and here if you want to browse.

Big Sage projects

  • Add general extensions of p-adic fields in Sage #23218 (David Roe)

  • Add Julian's Mac Lane package which provides a general framework for discrete valuations to Sage #21869 (Julian)

  • Add Julian's Completion package, for general p-adic extension backed by number fields, to Sage #22956 (Julian)

  • Polynomial factorization, using Julian's Mac Lane package and/or Brian Sinclair's ticket #12561 (Ticket needs review) (Brian - meeting in UHS 115)

    • make sure simpler factoring methods are in good shape, like Hensel lifting and Panayi's root finding.
  • Lattice precision for p-adics (in particular p-adic matrices, polynomials) (Xavier)
    • Smith normal form #23450 (ready for review), determinant #23478 (ready for review)

    • Hermite normal form #23486 (ready for review)

    • Lattices in p-adic vector spaces: this is handled by the generic code for modules over PID (after the implementation of HNF above and this simple ticket #23503)

    • Design a framework for lattice precision #23505

  • Power series via p-adic templates (Adriana)
  • Linkage files for p=2 and/or using longs for the case that pprec<262

  • Implementation of Gröbner bases and tropical Gröbner bases algorithm (F4, F5, FGLM), doctest and submission (Tristan). A ticket on F5 has been posted (#23461, needs review). A ticket on a Tropical F5 is in progress (#23501).

    • We might finish reviewing the inclusion of openf4 at #18749 and patch it to avoid going through strings all the time

    • And also look at the performance of Singular, polybori, giac, ...
  • Zeta function tickets
  • Roadmap for regular models in Sage using Mac Lane package, Suchandan Pal's code and Stefan Wewers' work. (Julian)

  • Etale algebras (maybe see also ticket #21413) (Ricky)

  • For an old list of possible projects, see padics

Smallish Sage projects

  • Norms, traces, frobenius, matrix mod pn for relative p-adic extensions (David)
  • Add more black-box testing to p-adics, performance benchmarketing (Aly)
  • nth roots, square roots that create extensions (extend=True as for integers) #12567 (Marc, David)

  • Artin-Hasse exponentials #12560 (Xavier)

  • Gauss sums via the Gross-Koblitz formula, which uses code on p-adic gamma functions #23456 (Adriana and Ander)

  • Better coercion/conversion to and from residue fields (Aly, Marc)
  • Optimized implementation of Frobenius automorphism #12657 (Ander)

  • p-adic polylogarithms #20260 (Alex) Ready for review!

  • bug in matrix of Frobenius when p = 3 #11960 (Jen)

  • Switching to exact defining polynomials for p-adic extensions #23331 (David)

  • Change p-adic constructors to not care about the base ring of a defining polynomial #18606 (David)

  • Investigate slowness in unramified extensions #23172 (Xavier)

  • Review Xavier's fast exponential code #23235 (Xavier)

  • Ray class groups and Hecke characters #15829 (Rob)

  • Add Monge-reduction for Eisenstein polynomials (first over Qp, then over unramified extensions) (Sebastian)

  • Generic zeta function method for schemes #20308 (Edgar)

  • Elliptic curve point counting over F_q using PARI #16931 #16949 (J-P Flori, Kevin)

  • Expose PARI code for Frobenius matrix on hyperelliptic curves #20309 (Marc)

  • Raise coverage of schemes/hyperelliptic_curves/monsky_washnitzer.py to 100% #15645 (Edgar)

  • Requested by Anna Haensch: A weak approximation function

Non Beginner Sage tickets needing review

Beginner Sage projects

LMFDB projects

days87/projects (last edited 2017-08-04 09:44:00 by saraedum)