Differences between revisions 75 and 173 (spanning 98 versions)
Revision 75 as of 2017-07-20 19:47:00
Size: 8739
Editor: abourgeois
Comment:
Revision 173 as of 2017-07-22 15:57:43
Size: 11509
Editor: MRupert
Comment:
Deletions are marked like this. Additions are marked like this.
Line 17: Line 17:
  * Hermite normal form [[https://trac.sagemath.org/ticket/23486|#23486]] (ready for review), lattices in p-adic vector spaces
  * Design new parents (ZpLCR, ZpLCA) for p-adics handled with lattice precision
  * Hermite normal form [[https://trac.sagemath.org/ticket/23486|#23486]] (ready for review)
  * Lattices in p-adic vector spaces: this is handled by the generic code for modules over PID (after the implementation of HNF above and --(this simple ticket [[https://trac.sagemath.org/ticket/23503|#23503]])--)
  * Design a framework for lattice precision [[https://trac.sagemath.org/ticket/23505|#23505]]
Line 21: Line 22:
 * Implementation of Gröbner bases and tropical Gröbner bases algorithm (F4, F5, FGLM), doctest and submission (Tristan)  * Implementation of Gröbner bases and tropical Gröbner bases algorithm (F4, F5, FGLM), doctest and submission (Tristan). A ticket on F5 has been posted ([[https://trac.sagemath.org/ticket/23461|#23461]], needs review). A ticket on a Tropical F5 is in progress ([[https://trac.sagemath.org/ticket/23501|#23501]]).
Line 25: Line 26:
  * [[https://trac.sagemath.org/ticket/20264|#20264]] (Edgar, Vishal Aru, Nicholas Triantafillou)   * [[https://trac.sagemath.org/ticket/20264|#20264]] (Edgar, Vishal Aru, Nicholas Triantafillou, Ricky)
Line 28: Line 29:
  * [[https://trac.sagemath.org/ticket/20308|#20308]] (Ben, David)
Line 36: Line 38:
 * nth roots, square roots that create extensions (extend=True as for integers) [[https://trac.sagemath.org/ticket/12567|#12567]] (Marc, Kevin)  * nth roots, square roots that create extensions (extend=True as for integers) [[https://trac.sagemath.org/ticket/12567|#12567]] (Marc, David)
Line 38: Line 40:
 * Gauss sums via the Gross-Koblitz formula, which uses code on p-adic gamma functions [[https://trac.sagemath.org/ticket/23456|#23456]] (Adriana and Ander) (ready for review)  * --(Gauss sums via the Gross-Koblitz formula, which uses code on p-adic gamma functions [[https://trac.sagemath.org/ticket/23456|#23456]] (Adriana and Ander))--
Line 41: Line 43:
 * p-adic polylogarithms [[https://trac.sagemath.org/ticket/20260|#20260]] (Alex)  * p-adic polylogarithms [[https://trac.sagemath.org/ticket/20260|#20260]] (Alex) Ready for review!
Line 55: Line 57:
== Non Beginner Sage tickets needing review ==

  * --([[https://trac.sagemath.org/ticket/23204|#23204]] (Aly) )--
  * [[https://trac.sagemath.org/ticket/23203|#23203]] (Claire)
  * [[https://trac.sagemath.org/ticket/23190|#23190]]
  * --([[https://trac.sagemath.org/ticket/23484|#23484]])--
  * [[https://trac.sagemath.org/ticket/23461|#23461]]
  * [[https://trac.sagemath.org/ticket/20265|#20265]]

Line 57: Line 69:
 * Change root_field to return a p-adic field [[https://trac.sagemath.org/ticket/14893|#14893]], --([[https://trac.sagemath.org/ticket/20244|#20244]])-- (Aly)  * Change root_field to return a p-adic field [[https://trac.sagemath.org/ticket/14893|#14893]], --([[https://trac.sagemath.org/ticket/20073|#20073]])--,--([[https://trac.sagemath.org/ticket/20244|#20244]])-- (Aly)
 * --(Add an `exact_ring` method for p-adic rings and fields [[https://trac.sagemath.org/ticket/23507|#23507]] (Adele))--
Line 61: Line 74:
  * [[https://trac.sagemath.org/ticket/12657|#12657]] (GaYee)
  * [[https://trac.sagemath.org/ticket/16949|#16949]] (GaYee)
  * [[https://trac.sagemath.org/ticket/23190|#23190]] (Adele)
  * [[https://trac.sagemath.org/ticket/23185|#23185]] (Sara)
  * [[https://trac.sagemath.org/ticket/23482|#23482]] (Claire)
  * --([[https://trac.sagemath.org/ticket/12657|#12657]] (GaYee))--
  * --([[https://trac.sagemath.org/ticket/16949|#16949]] (GaYee))--
  * [[https://trac.sagemath.org/ticket/23190|#23190]] (possible dependencies for global tests -- Adele)
  * [[https://trac.sagemath.org/ticket/23185|#23185]] (Needs work, doctests are failing)
  * --([[https://trac.sagemath.org/ticket/23482|#23482]] (Claire))--
Line 67: Line 80:
  * [[https://trac.sagemath.org/ticket/23484|#23484]] (David A.)
  * [[https://trac.sagemath.org/ticket/23376|#23376]]
  * [[https://trac.sagemath.org/ticket/23479|#23479]] (Sara)
  * [[https://trac.sagemath.org/ticket/23473|#23473]]
  * [[https://trac.sagemath.org/ticket/23456|#23456]]
  * [[https://trac.sagemath.org/ticket/23495|#23495]] (Adele)

  * --([[https://trac.sagemath.org/ticket/23484|#23484]] (Need to wait until [[https://trac.sagemath.org/ticket/23204|#23204]] is done -- David A.))--
  * [[https://trac.sagemath.org/ticket/23376|#23376]] (Samuel)
  * --([[https://trac.sagemath.org/ticket/23473|#23473]] (This tickets now needs a review ! -- David A.) (Freda))--
  * --([[https://trac.sagemath.org/ticket/23456|#23456]] (Adele))--
  * --([[https://trac.sagemath.org/ticket/23495|#23495]] (Adele))--
  * --([[https://trac.sagemath.org/ticket/23499|#23499]] (Adele))--
  * --([[https://trac.sagemath.org/ticket/23193|#23193]] (Freda))--
  * --([[https://trac.sagemath.org/ticket/23194|#23194]] (Edgar))--
  * --([[https://trac.sagemath.org/ticket/23235|#23235]] (Adele))--
  * --([[https://trac.sagemath.org/ticket/23479|#23479]] (Sara))--
  * --([[https://trac.sagemath.org/ticket/23503|#23503]] (Angie))--
  * [[https://trac.sagemath.org/ticket/12657|#12657]] (Sara)
  * --([[https://trac.sagemath.org/ticket/20308|#20308]] (David A.))--
  * --([[https://trac.sagemath.org/ticket/23509|#23509]] (Sara))--
  * polylogarithms [[https://trac.sagemath.org/ticket/20260|#20260]]
  * --([[https://trac.sagemath.org/ticket/23507|#23507]] (Sara))--
  * --([[https://trac.sagemath.org/ticket/23510|#23510]] (Adele))--
  * --([[https://trac.sagemath.org/ticket/23512|#23512]] (really small) (Edgar) )--
Line 78: Line 101:
 * Display Hecke eigenvalues in terms of an integral basis. See: [[https://github.com/LMFDB/lmfdb/issues/975 | #975]] (Edgar, Sam Schiavone, Michael Musty)
Line 85: Line 107:
 * Dirichlet characters modulo l: see https://github.com/sanni85/Dirichlet_modL (Samuele)
 * Galois representations modulo l: see https://github.com/sanni85/Mod-l-galois-representations and http://beta.lmfdb.org/Representation/Galois/ModL/ (Samuele)
 * Display local algebras (JJ)
 * Display Hecke eigenvalues in terms of an integral basis. See: [[https://github.com/LMFDB/lmfdb/issues/975 | #975]], pull request [[https://github.com/LMFDB/lmfdb/pull/2197 | #2197]] (Edgar, Sam Schiavone, Michael Musty)
 * Compute Galois splitting models (Ben, Angie)
 * --(Display local algebras (JJ))--
Line 97: Line 119:
  * --(Pull request [[https://github.com/LMFDB/lmfdb/pull/2198|#2198]]: Hilbert modular forms search CM and base change, solves issues [[https://github.com/LMFDB/lmfdb/issues/1975|#1975]], [[https://github.com/LMFDB/lmfdb/issues/1972| #1972]])--
 * Yoshida lifts of Hilbert modular forms: adding function to compute, working on displaying the data (Malcolm, Samuele) https://github.com/sanni85/lmfdb/tree/paramodular_lift and Pull Request https://github.com/LMFDB/lmfdb/pull/2201
Line 103: Line 126:
  * Dirichlet characters modulo l: see https://github.com/sanni85/Dirichlet_modL (Samuele)
  * Galois representations modulo l: see https://github.com/sanni85/Mod-l-galois-representations and http://beta.lmfdb.org/Representation/Galois/ModL/ (Samuele)

A list of tickets we're working on can be found here. If you work on a ticket, please add sd87 to the list of keywords so that it appears!

Most of the code for working with p-adics can be found here and here if you want to browse.

Big Sage projects

  • Add general extensions of p-adic fields in Sage #23218 (David Roe)

  • Add Julian's Mac Lane package which provides a general framework for discrete valuations to Sage #21869 (Julian)

  • Add Julian's Completion package, for general p-adic extension backed by number fields, to Sage #22956 (Julian)

  • Polynomial factorization, using Julian's Mac Lane package and/or Brian Sinclair's ticket #12561 (Ticket needs review) (Brian - meeting in UHS 115)

    • make sure simpler factoring methods are in good shape, like Hensel lifting and Panayi's root finding.
  • Lattice precision for p-adics (in particular p-adic matrices, polynomials) (Xavier)
    • Smith normal form #23450 (ready for review), determinant #23478 (ready for review)

    • Hermite normal form #23486 (ready for review)

    • Lattices in p-adic vector spaces: this is handled by the generic code for modules over PID (after the implementation of HNF above and this simple ticket #23503)

    • Design a framework for lattice precision #23505

  • Power series via p-adic templates (Adriana)
  • Linkage files for p=2 and/or using longs for the case that p^{\text{prec}} < 2^{62}

  • Implementation of Gröbner bases and tropical Gröbner bases algorithm (F4, F5, FGLM), doctest and submission (Tristan). A ticket on F5 has been posted (#23461, needs review). A ticket on a Tropical F5 is in progress (#23501).

    • We might finish reviewing the inclusion of openf4 at #18749 and patch it to avoid going through strings all the time

    • And also look at the performance of Singular, polybori, giac, ...
  • Zeta function tickets
  • Roadmap for regular models in Sage using Mac Lane package, Suchandan Pal's code and Stefan Wewers' work. (Julian)

  • Etale algebras (maybe see also ticket #21413) (Ricky)

  • For an old list of possible projects, see padics

Smallish Sage projects

  • Norms, traces, frobenius, matrix mod pn for relative p-adic extensions (David)
  • Add more black-box testing to p-adics, performance benchmarketing (Aly)
  • nth roots, square roots that create extensions (extend=True as for integers) #12567 (Marc, David)

  • Artin-Hasse exponentials #12560 (Xavier)

  • Gauss sums via the Gross-Koblitz formula, which uses code on p-adic gamma functions #23456 (Adriana and Ander)

  • Better coercion/conversion to and from residue fields (Aly, Marc)
  • Optimized implementation of Frobenius automorphism #12657 (Ander)

  • p-adic polylogarithms #20260 (Alex) Ready for review!

  • bug in matrix of Frobenius when p = 3 #11960 (Jen)

  • Switching to exact defining polynomials for p-adic extensions #23331 (David)

  • Change p-adic constructors to not care about the base ring of a defining polynomial #18606 (David)

  • Investigate slowness in unramified extensions #23172 (Xavier)

  • Review Xavier's fast exponential code #23235 (Xavier)

  • Ray class groups and Hecke characters #15829 (Rob)

  • Add Monge-reduction for Eisenstein polynomials (first over \mathbb{Q}_p, then over unramified extensions) (Sebastian)

  • Generic zeta function method for schemes #20308 (Edgar)

  • Elliptic curve point counting over F_q using PARI #16931 #16949 (J-P Flori, Kevin)

  • Expose PARI code for Frobenius matrix on hyperelliptic curves #20309 (Marc)

  • Raise coverage of schemes/hyperelliptic_curves/monsky_washnitzer.py to 100% #15645 (Edgar)

  • Requested by Anna Haensch: A weak approximation function

Non Beginner Sage tickets needing review

Beginner Sage projects

LMFDB projects

days87/projects (last edited 2017-08-04 09:44:00 by saraedum)