Differences between revisions 56 and 58 (spanning 2 versions)
Revision 56 as of 2015-06-02 04:20:45
Size: 11305
Editor: alauve
Comment:
Revision 58 as of 2015-06-02 04:35:47
Size: 11698
Editor: alauve
Comment:
Deletions are marked like this. Additions are marked like this.
Line 16: Line 16:
|| 10:00 ||<|4 #BBBBFF> Saliola ||<|4 #BBBBFF> Schilling ||<|4 #BBBBFF> Salisbury ||<|4 #BBBBFF> King ||<|4 #BBBBFF> open || || 10:00 ||<|4 #BBBBFF> [[#Saliola|Saliola]] ||<|4 #BBBBFF> [[#Schilling|Schilling]] ||<|4 #BBBBFF> [[#Salisbury|Salisbury]] ||<|4 #BBBBFF> [[#King|King]] ||<|4 #BBBBFF> open ||
Line 20: Line 20:
|| 11:00 ||<|2 #6666FF> Project Intros ||<|4> Tutorial: Thiruvathukal+Albert ||<|4> Tutorial: Tingley ||<|4> Tutorial: Lauve ||<|4> Tutorial: open || || 11:00 ||<|2 #6666FF> Project Intros ||<|4> Tutorial: [[#Mark|Thiruvathukal+Albert]] ||<|4> Tutorial: [[#Tingley|Tingley]] ||<|4> Tutorial: [[#Lauve|Lauve]] ||<|4> Tutorial: open ||
Line 22: Line 22:
|| 11:30 ||<|3> Tutorial: Doty || || 11:30 ||<|3> Tutorial: [[#Doty|Doty]] ||
Line 32: Line 32:
|| 14:00 ||<|3 #BBBBFF> Muthiah ||<|4 #BBBBFF> Zabrocki ||<|2 #BBBBFF> Seelinger || || 14:00 ||<|3 #BBBBFF> [[#Muthiah|Muthiah]] ||<|4 #BBBBFF> [[#Zabrocki|Zabrocki]] ||<|2 #BBBBFF> [[#Seelinger|Seelinger]] ||
Line 34: Line 34:
|| 14:30 ||<|2 #BBBBFF> Judge ||
|| 14:45 ||<|3 #BBBBFF> Bergeron ||
|| 14:30 ||<|2 #BBBBFF> [[#Judge|Judge]] ||
|| 14:45 ||<|3 #BBBBFF> [[#Bergeron|Bergeron]] ||
Line 114: Line 114:
||<style="width: 17%; text-align: left; border-left:none; border-right:none;"> '''Franco Saliola''' ||<style="width: 63%; text-align: left; border-left:none; border-right:none;"> ''Let's Start Using Sage!'' || ||<style="width: 17%; text-align: left; border-left:none; border-right:none;"> <<Anchor(Saliola)>>'''Franco Saliola''' ||<style="width: 63%; text-align: left; border-left:none; border-right:none;"> ''Let's Start Using Sage!'' ||
Line 116: Line 116:
||<style="text-align: left; border-left:none; border-right:none;"> '''Stephen Doty''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Getting Started with the Sagemath Cloud'' || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Doty)>>'''Stephen Doty''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Getting Started with the Sagemath Cloud'' ||
Line 118: Line 118:
||<style="text-align: left; border-left:none; border-right:none;"> '''Dinakar Muthiah''' ||<style="text-align: left; border-left:none; border-right:none;"> ''TBA'' || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Muthiah)>>'''Dinakar Muthiah''' ||<style="text-align: left; border-left:none; border-right:none;"> ''TBA'' ||
Line 120: Line 120:
||<style="text-align: left; border-left:none; border-right:none;"> '''Nantel Bergeron''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Homogeneous, Non-commutative Gröbner Bases'' || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Bergeron)>>'''Nantel Bergeron''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Homogeneous, Non-commutative Gröbner Bases'' ||
Line 123: Line 123:
||<style="text-align: left; border-left:none; border-right:none;"> '''Anne Schilling''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Algebraic Combinatorics in Sage: How to use it, make it, and get it into Sage'' || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Schilling)>>'''Anne Schilling''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Algebraic Combinatorics in Sage: How to use it, make it, and get it into Sage'' ||
Line 125: Line 125:
||<style="text-align: left; border-left:none; border-right:none;"> '''Mark A. & George T.''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Code collaboration in SAGE and other open source projects'' || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Mark)>>'''Mark A. & George T.''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Code collaboration in SAGE and other open source projects'' ||
Line 127: Line 127:
||<style="text-align: left; border-left:none; border-right:none;"> '''Mike Zabrocki''' ||<style="text-align: left; border-left:none; border-right:none;"> ''How to program a combinatorial Hopf algebra (with bases)'' || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Zabrocki)>>'''Mike Zabrocki''' ||<style="text-align: left; border-left:none; border-right:none;"> ''How to program a combinatorial Hopf algebra (with bases)'' ||
Line 130: Line 130:
||<style="text-align: left; border-left:none; border-right:none;"> '''Ben Salisbury''' ||<style="text-align: left; border-left:none; border-right:none;"> ''TBA'' || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Salisbury)>>'''Ben Salisbury''' ||<style="text-align: left; border-left:none; border-right:none;"> ''TBA'' ||
Line 132: Line 132:
||<style="text-align: left; border-left:none; border-right:none;"> '''Peter Tingley''' ||<style="text-align: left; border-left:none; border-right:none;"> ''TBA'' || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Tingley)>>'''Peter Tingley''' ||<style="text-align: left; border-left:none; border-right:none;"> ''TBA'' ||
Line 135: Line 135:
||<style="text-align: left; border-left:none; border-right:none;"> '''Simon King''' ||<style="text-align: left; border-left:none; border-right:none;"> ''An F5 algorithm for modules over path algebra quotients and the computation of Loewy layers'' ||
||||<( style="border:none;"> The F5 algorithm is a signature based algorithm to compute Gröbner bases for modules over polynomial rings. The F5 signature allows to exploit commutativity relations in order to avoid redundant computations. When considering modules over path algebra quotients, one can instead exploit the quotient relations to avoid redundancies.<<BR>>&nbsp;<<BR>>
For my applications, it is important that Gröbner bases are actually not more than a by-product of the F5 algorithm. Indeed, the F5 signature provides additional information: If the quotient algebra is a basic algebra and if a negative degree monomial ordering is used, then the F5 signature allows to read off the Loewy layers of the module.<<BR>>&nbsp; ||
||<style="text-align: left; border-left:none; border-right:none;"> '''Aaron Lauve''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Convolution Powers: step by step'' ||
||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(King)>>'''Simon King''' ||<style="text-align: left; border-left:none; border-right:none;"> ''An F5 algorithm for modules over path algebra quotients and the computation of Loewy layers'' ||
||||<( style="border:none;"> The F5 algorithm is a signature based algorithm to compute Gröbner bases for modules over polynomial rings. The F5 signature allows to exploit commutativity relations in order to avoid redundant computations. When considering modules over path algebra quotients, one can instead exploit the quotient relations to avoid redundancies. <<BR>>&nbsp;<<BR>>For my applications, it is important that Gröbner bases are actually not more than a by-product of the F5 algorithm. Indeed, the F5 signature provides additional information: If the quotient algebra is a basic algebra and if a negative degree monomial ordering is used, then the F5 signature allows to read off the Loewy layers of the module.<<BR>>&nbsp; ||
||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Lauve)>>'''Aaron Lauve''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Convolution Powers: step by step'' ||
Line 140: Line 139:
||<style="text-align: left; border-left:none; border-right:none;"> '''George Seelinger''' ||<style="text-align: left; border-left:none; border-right:none;"> ''TBA'' || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Seelinger)>>'''George Seelinger''' ||<style="text-align: left; border-left:none; border-right:none;"> ''TBA'' ||
Line 142: Line 141:
||<style="text-align: left; border-left:none; border-right:none;"> '''Jonathan Judge''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Root Multiplicities for Kac-Moody Algebras in Sage'' || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Judge)>>'''Jonathan Judge''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Root Multiplicities for Kac-Moody Algebras in Sage'' ||
Line 145: Line 144:
||<style="text-align: left; border-left:none; border-right:none;"> '''open''' ||<style="text-align: left; border-left:none; border-right:none;"> ''...''<<BR>>&nbsp; || ||<style="text-align: left; border-left:none; border-right:none;"> '''open''' ||<style="text-align: left; border-left:none; border-right:none;"> ''...'' ||

Sage Days 65 in Chicago

When and where?

June 8-12, 2015, at Loyola University Chicago, in Chicago, Ill., USA.

Specifically, IES Building (#38), Rooms 123 & 124.

Tentative Schedule

 

Mon

Tue

Wed

Thu

Fri

9:30

Coffee

Coffee

Coffee

Coffee

Coffee

9:45

10:00

Saliola

Schilling

Salisbury

King

open

10:15

10:30

10:45

11:00

Project Intros

Tutorial: Thiruvathukal+Albert

Tutorial: Tingley

Tutorial: Lauve

Tutorial: open

11:15

11:30

Tutorial: Doty

11:45

12:00

Lunch

Lunch / Free Afternoon

Lunch

Final Progress Reports

12:15

Lunch

12:30

12:45

13:00

13:15

13:30

13:45

14:00

Muthiah

Zabrocki

Seelinger

14:15

14:30

Judge

14:45

Bergeron

15:00

Coffee

Coffee

15:15

15:30

Coffee

Small groups (coding/tutorials)

Small groups (coding/tutorials)

15:45

16:00

Small groups (coding/tutorials)

16:15

16:30

16:45

17:00

Progress Reports

Progress Reports

17:15

17:30

Progress Reports

17:45

18:00

18:15

18:30

18:45

19:00

Goose Island Brew Pub

Main Focci

  • We develop code for SAGE support of MV-polytopes and affine crystals.
  • We develop code for SAGE support of combinatorial Hopf algebras.
  • We get newcomers to SAGE as up to speed as possible in a week!

(Personal) Goals for the Week

Participants should feel free to add to this list in advance of the meeting. Anonymous contributions are okay.

  • Develop code for Hopf monoids in species (Lauve)
  • Learn how to use SAGE in my classroom
  • Resume coding basic algebraic structure for KLR-algebras, quantum shuffle algebras, etc (Im)
  • Start a wiki for combinatorial Hopf algebras, in the format of FindStat (Pang)

  • Crystals of tableaux for the Lie superalgebra gl(m|n) (Salisbury)
  • improve NC-Grobner basis calculations, implement dual Quasi-Schur basis #18447 (Zabrocki)
  • Non-commutative version of Faugere's F5 algorithm in Sage (King)
  • Code test for satisfaction of A_\infty-algebra relations (Fansler)

Participants

  • Darlayne Addabbo (U Illinois)
  • Mark V. Albert (Loyola Chicago)
  • N. Bergeron
  • Kevin Dilks (U Minnesota)
  • Steve Doty (Loyola Chicago)
  • Merv Fansler (Millersville U)
  • Gabriel Feinberg (Haverford College)
  • Emily Gunawan (U Minnesota)
  • Christine Haught (Loyola Chicago)
  • Mee Seong Im (U Illinois and USMA)
  • Jonathan Judge (UConn)
  • WonGeun Kim (CUNY)

  • Simon King (FSU Jena, Germany)
  • Michael Kratochvil (Loyola Chicago)
  • Jonathan Lamar (U Colorado)
  • Aaron Lauve (Loyola Chicago)
  • Jake Levinson (U Michigan)
  • Megan Ly (Boulder)
  • Dinakar Muthiah (U Toronto)
  • Amy Pang (LaCIM, UQAM)
  • Kyle Petersen (DePaul U, tentative)

  • Viviane Pons (LRI, U Paris-Sud)
  • Anup Poudel (Loyola)
  • Franco Saliola (UQAM)
  • Ben Salisbury (Central Michigan U)
  • Anne Schilling (UC Davis)
  • Adam Schultze (Loyola Chicago and SUNY Albany)
  • George H. Seelinger (Loyola Chicago)
  • Mark Shimozono (Virginia Tech)
  • Bridget Tenner (DePaul U, tentative)

  • George Thiruvathukal (Loyola Chicago)
  • Thomas (tentative)
  • Peter Tingley (Loyola Chicago)
  • Yannic Vargas (UQAM)
  • Panupong Vichitkunakorn (U Illinois)
  • Mike Zabrocki (York U)

Abstracts

Monday

Franco Saliola

Let's Start Using Sage!

A whirlwind tour of what Sage can and cannot do (and why you should care).
 

Stephen Doty

Getting Started with the Sagemath Cloud

Sagemath Cloud is a recent project to make Sage (and much more: e.g., Python, R, LaTeX, Terminal) available in any modern browser, without the need to install anything on the computer. This will be an introduction, with no prerequisites.
 

Dinakar Muthiah

TBA

...
 

Nantel Bergeron

Homogeneous, Non-commutative Gröbner Bases

Computing a non-commutative Gröbner basis takes an extremely long time. I will present the algorithm and indicate where it could be parallelized...
 

Tuesday

Anne Schilling

Algebraic Combinatorics in Sage: How to use it, make it, and get it into Sage

We will very briefly discuss the history of combinatorics in Sage and give some examples on how to use some features like crystals, permutations and words. We will then implement some new missing features together and see how to get them into Sage.
 

Mark A. & George T.

Code collaboration in SAGE and other open source projects

We will have a brief introduction to the typical organizational structures and technologies used by large-scale open source projects and how one can contribute at various levels in each. This will be followed by a tutorial for working collaboratively on code to contribute directly to the SAGE environment.
 

Mike Zabrocki

How to program a combinatorial Hopf algebra (with bases)

I will review the structure of the code for combinatorial Hopf algebras (symmetric functions/partitions, quasi-symmetric functions/compositions, non-commutative symmetric functions/compositions, symmetric functions in non-commuting variables/set partitions) that are already in Sage and explain how to create a new combinatorial Hopf algebra on another set of combinatorial objects. I will also point out the ongoing work on open tickets to implement other combinatorial Hopf algebras (packed words #15611, FQSym, WQSym, PQSym #13793, PBT/Loday-Ronco #13855)
 

Wednesday

Ben Salisbury

TBA

...
 

Peter Tingley

TBA

...
 

Thursday

Simon King

An F5 algorithm for modules over path algebra quotients and the computation of Loewy layers

The F5 algorithm is a signature based algorithm to compute Gröbner bases for modules over polynomial rings. The F5 signature allows to exploit commutativity relations in order to avoid redundant computations. When considering modules over path algebra quotients, one can instead exploit the quotient relations to avoid redundancies.
 
For my applications, it is important that Gröbner bases are actually not more than a by-product of the F5 algorithm. Indeed, the F5 signature provides additional information: If the quotient algebra is a basic algebra and if a negative degree monomial ordering is used, then the F5 signature allows to read off the Loewy layers of the module.
 

Aaron Lauve

Convolution Powers: step by step

I share my personal story (I want to say "natural progression" but I'm sure it's nothing of the kind) from perceived gap in the Sage code for Hopf algebras to sage-trac ticket submission.
 

George Seelinger

TBA

...

Jonathan Judge

Root Multiplicities for Kac-Moody Algebras in Sage

Root multiplicities are fundamental data in the structure theory of Kac-Moody algebras. We will give a brief survey on root multiplicities that highlights the differences between finite, affine, and indefinite types. Then we will describe the two main ways that these multiplicities are computed, namely Berman-Moody's formula and Peterson's recurrent formula. Lastly, we demonstrate an implementation of Peterson's recurrent formula in Sage.
 

Friday

open

...

Organizers

  • ALBERT, Mark V. (Loyola Chicago -- Computer Science)
  • LAUVE, Aaron (Loyola Chicago -- Mathematics)
  • TINGLEY, Peter (Loyola Chicago -- Mathematics)

Web page

http://math.luc.edu/sagedays/ (with information about housing)

days65 (last edited 2015-07-29 20:57:38 by ptingley)