Differences between revisions 40 and 62 (spanning 22 versions)
Revision 40 as of 2015-05-18 01:18:30
Size: 4120
Editor: mshimo
Comment:
Revision 62 as of 2015-06-02 14:41:17
Size: 12390
Editor: alauve
Comment:
Deletions are marked like this. Additions are marked like this.
Line 8: Line 8:
== Confirmed Speakers ==
 * Nantel Bergeron (York U)
 * Dinakar Muthiah (U Toronto)
 * Ben Salisbury (Central Michigan U)
 * Franco Saliola (UQAM)
 * Anne Schilling (UC Davis)
 * Mike Zabrocki (York U)
Specifically, IES Building [[http://www.luc.edu/media/lucedu/lsc.pdf|(#38)]], Rooms 123 & 124.
Line 21: Line 16:
|| 10:00 ||<|4 #BBBBFF> Saliola ||<|4 #BBBBFF> Schilling ||<|4 #BBBBFF> Salisbury ||<|4 #BBBBFF> Seelinger? ||<|4 #BBBBFF> open || || 10:00 ||<|4 #BBBBFF> [[#Saliola|Saliola]] ||<|4 #BBBBFF> [[#Schilling|Schilling]] ||<|4 #BBBBFF> [[#Salisbury|Salisbury]] ||<|4 #BBBBFF> [[#King|King]] ||<|4 #BBBBFF> open ||
Line 25: Line 20:
|| 11:00 ||<|2 #6666FF> Project Intros ||<|4> Tutorial/Worksheets: Thiruvathukal+Albert ||<|4> Tutorial/Worksheets: Tingley ||<|4> Tutorial/Worksheets: Lauve ||<|4> Tutorial/Worksheets: open || || 11:00 ||<|2 #6666FF> Project Intros ||<|4> Tutorial: [[#Mark|Thiruvathukal+Albert]] ||<|4> Tutorial: [[#Tingley|Tingley]] ||<|4> Tutorial: [[#Lauve|Lauve]] ||<|4> Tutorial: open ||
Line 27: Line 22:
|| 11:30 ||<|3> Tutorial/Worksheets: Doty || || 11:30 ||<|3> Tutorial: [[#Doty|Doty]] ||
Line 37: Line 32:
|| 14:00 ||<|3 #BBBBFF> Muthiah ||<|4 #BBBBFF> Zabrocki ||<|4 #BBBBFF> Judge? || || 14:00 ||<|3 #BBBBFF> [[#Muthiah|Muthiah]] ||<|4 #BBBBFF> [[#Zabrocki|Zabrocki]] ||<|2 #BBBBFF> [[#Seelinger|Seelinger]] ||
Line 39: Line 34:
|| 14:30 ||
|| 14:45 ||<|3 #BBBBFF> Bergeron ||
|| 14:30 ||<|2 #BBBBFF> [[#Judge|Judge]] ||
|| 14:45 ||<|3 #BBBBFF> [[#Bergeron|Bergeron]] ||
Line 57: Line 52:
|| 19:00 || Goose Island Brew Pub || || 19:00 ||<:> [[http://www.gooseislandbrewpubs.com/home-clybourn/|Goose Island Brew Pub]] ||
Line 71: Line 66:
 * Start a wiki for combinatorial Hopf algebras, in the format of FindStat (Pang)  * Start a wiki for combinatorial Hopf algebras, in the format of [[http://www.findstat.org|FindStat]] (Pang)
Line 73: Line 68:
 * improve NC-Grobner basis calculations, implement dual Quasi-Schur basis #18447 (Zabrocki)
 * Non-commutative version of Faugere's F5 algorithm in Sage (King)
 * Code test for satisfaction of $A_\infty$-algebra relations (Fansler)
Line 76: Line 74:
 * Addabbo  * Darlayne Addabbo (U Illinois)
Line 82: Line 80:
 * Feinberg  * Gabriel Feinberg (Haverford College)
Line 84: Line 82:
 * Haught  * Christine Haught (Loyola Chicago)
Line 87: Line 85:
 * Kim
 * King
 * WonGeun Kim (CUNY)
 * Simon King (FSU Jena, Germany)
Line 93: Line 91:
 * Ly  * Megan Ly (Boulder)
Line 98: Line 96:
 * Poudel  * Anup Poudel (Loyola)
Line 102: Line 100:
 * Schultze  * Adam Schultze (Loyola Chicago and SUNY Albany)
Line 112: Line 110:
 * Zhou
Line 114: Line 111:

== Abstracts ==
||||<tablewidth="80%" style="background-color: #d63366; text-align: left; color: #FFFFFF; border:none;"> '''Monday''' ||
||<style="width: 17%; text-align: left; border-left:none; border-right:none;"> <<Anchor(Saliola)>>'''Franco Saliola''' ||<style="width: 63%; text-align: left; border-left:none; border-right:none;"> ''Let's Start Using Sage!'' ||
||||<( style="border:none;"> A whirlwind tour of what Sage can and cannot do (and why you should care).<<BR>>&nbsp; ||
||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Doty)>>'''Stephen Doty''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Getting Started with the Sagemath Cloud'' ||
||||<( style="border:none;"> Sagemath Cloud is a recent project to make Sage (and much more: e.g., Python, R, LaTeX, Terminal) available in any modern browser, without the need to install anything on the computer. This will be an introduction, with no prerequisites.<<BR>>&nbsp; ||
||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Muthiah)>>'''Dinakar Muthiah''' ||<style="text-align: left; border-left:none; border-right:none;"> ''MV polytopes in finite and affine type'' ||
||||<( style="border:none;"> MV polytopes provide a model for highest weight crystals in finite and affine type. Interest in MV polytopes comes from the variety of different contexts in which they appear: MV cycles in the affine Grassmannian, irreducible components in preprojective varieties, character-support for KLR modules, and PBW bases. They also can be constructed purely combinatorially. I will focus on the combinatorics of MV polytopes and briefly mention the other contexts in which they appear. I will also discuss the MV polytope code that we have already written and explain some of the tasks that remain.<<BR>>&nbsp; ||
||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Bergeron)>>'''Nantel Bergeron''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Homogeneous, Non-commutative Gröbner Bases'' ||
||||<( style="border:none;"> Computing a non-commutative Gröbner basis takes an extremely long time. I will present the algorithm and indicate where it could be parallelized...<<BR>>&nbsp; ||
||||<style="background-color: #d63366; text-align: left; color: #FFFFFF; border:none;"> '''Tuesday''' ||
||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Schilling)>>'''Anne Schilling''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Algebraic Combinatorics in Sage: How to use it, make it, and get it into Sage'' ||
||||<( style="border:none;"> We will very briefly discuss the history of combinatorics in Sage and give some examples on how to use some features like crystals, permutations and words. We will then implement some new missing features together and see how to get them into Sage.<<BR>>&nbsp; ||
||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Mark)>>'''Mark A. & George T.''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Code collaboration in SAGE and other open source projects'' ||
||||<( style="border:none;"> We will have a brief introduction to the typical organizational structures and technologies used by large-scale open source projects and how one can contribute at various levels in each. This will be followed by a tutorial for working collaboratively on code to contribute directly to the SAGE environment.<<BR>>&nbsp; ||
||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Zabrocki)>>'''Mike Zabrocki''' ||<style="text-align: left; border-left:none; border-right:none;"> ''How to program a combinatorial Hopf algebra (with bases)'' ||
||||<( style="border:none;"> I will review the structure of the code for combinatorial Hopf algebras (symmetric functions/partitions, quasi-symmetric functions/compositions, non-commutative symmetric functions/compositions, symmetric functions in non-commuting variables/set partitions) that are already in Sage and explain how to create a new combinatorial Hopf algebra on another set of combinatorial objects. I will also point out the ongoing work on open tickets to implement other combinatorial Hopf algebras (packed words #15611, FQSym, WQSym, PQSym #13793, PBT/Loday-Ronco #13855)<<BR>>&nbsp; ||
||||<style="background-color: #d63366; text-align: left; color: #FFFFFF; border:none;"> '''Wednesday''' ||
||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Salisbury)>>'''Ben Salisbury''' ||<style="text-align: left; border-left:none; border-right:none;"> ''TBA'' ||
||||<( style="border:none;"> ...<<BR>>&nbsp; ||
||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Tingley)>>'''Peter Tingley''' ||<style="text-align: left; border-left:none; border-right:none;"> ''TBA'' ||
||||<( style="border:none;"> ...<<BR>>&nbsp; ||
||||<style="background-color: #d63366; text-align: left; color: #FFFFFF; border:none;"> '''Thursday''' ||
||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(King)>>'''Simon King''' ||<style="text-align: left; border-left:none; border-right:none;"> ''An F5 algorithm for modules over path algebra quotients and the computation of Loewy layers'' ||
||||<( style="border:none;"> The F5 algorithm is a signature based algorithm to compute Gröbner bases for modules over polynomial rings. The F5 signature allows to exploit commutativity relations in order to avoid redundant computations. When considering modules over path algebra quotients, one can instead exploit the quotient relations to avoid redundancies. <<BR>>&nbsp;<<BR>>For my applications, it is important that Gröbner bases are actually not more than a by-product of the F5 algorithm. Indeed, the F5 signature provides additional information: If the quotient algebra is a basic algebra and if a negative degree monomial ordering is used, then the F5 signature allows to read off the Loewy layers of the module.<<BR>>&nbsp; ||
||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Lauve)>>'''Aaron Lauve''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Convolution Powers: step by step'' ||
||||<( style="border:none;"> I share my personal story (I want to say "natural progression" but I'm sure it's nothing of the kind) from perceived gap in the Sage code for Hopf algebras to sage-trac ticket submission.<<BR>>&nbsp; ||
||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Seelinger)>>'''George Seelinger''' ||<style="text-align: left; border-left:none; border-right:none;"> ''TBA'' ||
||||<( style="border:none;"> ...<<BR>>&nbsp; ||
||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Judge)>>'''Jonathan Judge''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Root Multiplicities for Kac-Moody Algebras in Sage'' ||
||||<( style="border:none;"> Root multiplicities are fundamental data in the structure theory of Kac-Moody algebras. We will give a brief survey on root multiplicities that highlights the differences between finite, affine, and indefinite types. Then we will describe the two main ways that these multiplicities are computed, namely Berman-Moody's formula and Peterson's recurrent formula. Lastly, we demonstrate an implementation of Peterson's recurrent formula in Sage.<<BR>>&nbsp; ||
||||<style="background-color: #d63366; text-align: left; color: #FFFFFF; border:none;"> '''Friday''' ||
||<style="text-align: left; border-left:none; border-right:none;"> '''open''' ||<style="text-align: left; border-left:none; border-right:none;"> ''...'' ||

Sage Days 65 in Chicago

When and where?

June 8-12, 2015, at Loyola University Chicago, in Chicago, Ill., USA.

Specifically, IES Building (#38), Rooms 123 & 124.

Tentative Schedule

 

Mon

Tue

Wed

Thu

Fri

9:30

Coffee

Coffee

Coffee

Coffee

Coffee

9:45

10:00

Saliola

Schilling

Salisbury

King

open

10:15

10:30

10:45

11:00

Project Intros

Tutorial: Thiruvathukal+Albert

Tutorial: Tingley

Tutorial: Lauve

Tutorial: open

11:15

11:30

Tutorial: Doty

11:45

12:00

Lunch

Lunch / Free Afternoon

Lunch

Final Progress Reports

12:15

Lunch

12:30

12:45

13:00

13:15

13:30

13:45

14:00

Muthiah

Zabrocki

Seelinger

14:15

14:30

Judge

14:45

Bergeron

15:00

Coffee

Coffee

15:15

15:30

Coffee

Small groups (coding/tutorials)

Small groups (coding/tutorials)

15:45

16:00

Small groups (coding/tutorials)

16:15

16:30

16:45

17:00

Progress Reports

Progress Reports

17:15

17:30

Progress Reports

17:45

18:00

18:15

18:30

18:45

19:00

Goose Island Brew Pub

Main Focci

  • We develop code for SAGE support of MV-polytopes and affine crystals.
  • We develop code for SAGE support of combinatorial Hopf algebras.
  • We get newcomers to SAGE as up to speed as possible in a week!

(Personal) Goals for the Week

Participants should feel free to add to this list in advance of the meeting. Anonymous contributions are okay.

  • Develop code for Hopf monoids in species (Lauve)
  • Learn how to use SAGE in my classroom
  • Resume coding basic algebraic structure for KLR-algebras, quantum shuffle algebras, etc (Im)
  • Start a wiki for combinatorial Hopf algebras, in the format of FindStat (Pang)

  • Crystals of tableaux for the Lie superalgebra gl(m|n) (Salisbury)
  • improve NC-Grobner basis calculations, implement dual Quasi-Schur basis #18447 (Zabrocki)
  • Non-commutative version of Faugere's F5 algorithm in Sage (King)
  • Code test for satisfaction of A_\infty-algebra relations (Fansler)

Participants

  • Darlayne Addabbo (U Illinois)
  • Mark V. Albert (Loyola Chicago)
  • N. Bergeron
  • Kevin Dilks (U Minnesota)
  • Steve Doty (Loyola Chicago)
  • Merv Fansler (Millersville U)
  • Gabriel Feinberg (Haverford College)
  • Emily Gunawan (U Minnesota)
  • Christine Haught (Loyola Chicago)
  • Mee Seong Im (U Illinois and USMA)
  • Jonathan Judge (UConn)
  • WonGeun Kim (CUNY)

  • Simon King (FSU Jena, Germany)
  • Michael Kratochvil (Loyola Chicago)
  • Jonathan Lamar (U Colorado)
  • Aaron Lauve (Loyola Chicago)
  • Jake Levinson (U Michigan)
  • Megan Ly (Boulder)
  • Dinakar Muthiah (U Toronto)
  • Amy Pang (LaCIM, UQAM)
  • Kyle Petersen (DePaul U, tentative)

  • Viviane Pons (LRI, U Paris-Sud)
  • Anup Poudel (Loyola)
  • Franco Saliola (UQAM)
  • Ben Salisbury (Central Michigan U)
  • Anne Schilling (UC Davis)
  • Adam Schultze (Loyola Chicago and SUNY Albany)
  • George H. Seelinger (Loyola Chicago)
  • Mark Shimozono (Virginia Tech)
  • Bridget Tenner (DePaul U, tentative)

  • George Thiruvathukal (Loyola Chicago)
  • Thomas (tentative)
  • Peter Tingley (Loyola Chicago)
  • Yannic Vargas (UQAM)
  • Panupong Vichitkunakorn (U Illinois)
  • Mike Zabrocki (York U)

Abstracts

Monday

Franco Saliola

Let's Start Using Sage!

A whirlwind tour of what Sage can and cannot do (and why you should care).
 

Stephen Doty

Getting Started with the Sagemath Cloud

Sagemath Cloud is a recent project to make Sage (and much more: e.g., Python, R, LaTeX, Terminal) available in any modern browser, without the need to install anything on the computer. This will be an introduction, with no prerequisites.
 

Dinakar Muthiah

MV polytopes in finite and affine type

MV polytopes provide a model for highest weight crystals in finite and affine type. Interest in MV polytopes comes from the variety of different contexts in which they appear: MV cycles in the affine Grassmannian, irreducible components in preprojective varieties, character-support for KLR modules, and PBW bases. They also can be constructed purely combinatorially. I will focus on the combinatorics of MV polytopes and briefly mention the other contexts in which they appear. I will also discuss the MV polytope code that we have already written and explain some of the tasks that remain.
 

Nantel Bergeron

Homogeneous, Non-commutative Gröbner Bases

Computing a non-commutative Gröbner basis takes an extremely long time. I will present the algorithm and indicate where it could be parallelized...
 

Tuesday

Anne Schilling

Algebraic Combinatorics in Sage: How to use it, make it, and get it into Sage

We will very briefly discuss the history of combinatorics in Sage and give some examples on how to use some features like crystals, permutations and words. We will then implement some new missing features together and see how to get them into Sage.
 

Mark A. & George T.

Code collaboration in SAGE and other open source projects

We will have a brief introduction to the typical organizational structures and technologies used by large-scale open source projects and how one can contribute at various levels in each. This will be followed by a tutorial for working collaboratively on code to contribute directly to the SAGE environment.
 

Mike Zabrocki

How to program a combinatorial Hopf algebra (with bases)

I will review the structure of the code for combinatorial Hopf algebras (symmetric functions/partitions, quasi-symmetric functions/compositions, non-commutative symmetric functions/compositions, symmetric functions in non-commuting variables/set partitions) that are already in Sage and explain how to create a new combinatorial Hopf algebra on another set of combinatorial objects. I will also point out the ongoing work on open tickets to implement other combinatorial Hopf algebras (packed words #15611, FQSym, WQSym, PQSym #13793, PBT/Loday-Ronco #13855)
 

Wednesday

Ben Salisbury

TBA

...
 

Peter Tingley

TBA

...
 

Thursday

Simon King

An F5 algorithm for modules over path algebra quotients and the computation of Loewy layers

The F5 algorithm is a signature based algorithm to compute Gröbner bases for modules over polynomial rings. The F5 signature allows to exploit commutativity relations in order to avoid redundant computations. When considering modules over path algebra quotients, one can instead exploit the quotient relations to avoid redundancies.
 
For my applications, it is important that Gröbner bases are actually not more than a by-product of the F5 algorithm. Indeed, the F5 signature provides additional information: If the quotient algebra is a basic algebra and if a negative degree monomial ordering is used, then the F5 signature allows to read off the Loewy layers of the module.
 

Aaron Lauve

Convolution Powers: step by step

I share my personal story (I want to say "natural progression" but I'm sure it's nothing of the kind) from perceived gap in the Sage code for Hopf algebras to sage-trac ticket submission.
 

George Seelinger

TBA

...
 

Jonathan Judge

Root Multiplicities for Kac-Moody Algebras in Sage

Root multiplicities are fundamental data in the structure theory of Kac-Moody algebras. We will give a brief survey on root multiplicities that highlights the differences between finite, affine, and indefinite types. Then we will describe the two main ways that these multiplicities are computed, namely Berman-Moody's formula and Peterson's recurrent formula. Lastly, we demonstrate an implementation of Peterson's recurrent formula in Sage.
 

Friday

open

...

Organizers

  • ALBERT, Mark V. (Loyola Chicago -- Computer Science)
  • LAUVE, Aaron (Loyola Chicago -- Mathematics)
  • TINGLEY, Peter (Loyola Chicago -- Mathematics)

Web page

http://math.luc.edu/sagedays/ (with information about housing)

days65 (last edited 2015-07-29 20:57:38 by ptingley)