3930
Comment:
|
11710
|
Deletions are marked like this. | Additions are marked like this. |
Line 8: | Line 8: |
== Confirmed Speakers == * Nantel Bergeron (York U) * Dinakar Muthiah (U Toronto) * Ben Salisbury (U Central Michigan) * Franco Saliola (UQAM) * Anne Schilling (UC Davis) * Mike Zabrocki (York U) |
Specifically, IES Building [[http://www.luc.edu/media/lucedu/lsc.pdf|(#38)]], Rooms 123 & 124. |
Line 21: | Line 16: |
|| 10:00 ||<|4 #BBBBFF> Saliola ||<|4 #BBBBFF> Schilling ||<|4 #BBBBFF> Salisbury ||<|4 #BBBBFF> Seelinger? ||<|4 #BBBBFF> open || | || 10:00 ||<|4 #BBBBFF> [[#Saliola|Saliola]] ||<|4 #BBBBFF> [[#Schilling|Schilling]] ||<|4 #BBBBFF> [[#Salisbury|Salisbury]] ||<|4 #BBBBFF> [[#King|King]] ||<|4 #BBBBFF> open || |
Line 25: | Line 20: |
|| 11:00 ||<|2 #6666FF> Project Intros ||<|4> Tutorial/Worksheets: Thiruvathukal+Albert ||<|4> Tutorial/Worksheets: Tingley ||<|4> Tutorial/Worksheets: Lauve ||<|4> Tutorial/Worksheets: open || | || 11:00 ||<|2 #6666FF> Project Intros ||<|4> Tutorial: [[#Mark|Thiruvathukal+Albert]] ||<|4> Tutorial: [[#Tingley|Tingley]] ||<|4> Tutorial: [[#Lauve|Lauve]] ||<|4> Tutorial: open || |
Line 27: | Line 22: |
|| 11:30 ||<|3> Tutorial/Worksheets: Doty || | || 11:30 ||<|3> Tutorial: [[#Doty|Doty]] || |
Line 37: | Line 32: |
|| 14:00 ||<|3 #BBBBFF> Muthiah ||<|4 #BBBBFF> Zabrocki ||<|4 #BBBBFF> Judge? || | || 14:00 ||<|3 #BBBBFF> [[#Muthiah|Muthiah]] ||<|4 #BBBBFF> [[#Zabrocki|Zabrocki]] ||<|2 #BBBBFF> [[#Seelinger|Seelinger]] || |
Line 39: | Line 34: |
|| 14:30 || || 14:45 ||<|3 #BBBBFF> Bergeron || |
|| 14:30 ||<|2 #BBBBFF> [[#Judge|Judge]] || || 14:45 ||<|3 #BBBBFF> [[#Bergeron|Bergeron]] || |
Line 71: | Line 66: |
* Start a wiki for combinatorial Hopf algebras, in the format of [[http://www.findstat.org|FindStat]] (Pang) * Crystals of tableaux for the Lie superalgebra gl(m|n) (Salisbury) * improve NC-Grobner basis calculations, implement dual Quasi-Schur basis #18447 (Zabrocki) * Non-commutative version of Faugere's F5 algorithm in Sage (King) * Code test for satisfaction of $A_\infty$-algebra relations (Fansler) |
|
Line 74: | Line 74: |
* Addabbo | * Darlayne Addabbo (U Illinois) |
Line 80: | Line 80: |
* Feinberg | * Gabriel Feinberg (Haverford College) |
Line 82: | Line 82: |
* Haught | * Christine Haught (Loyola Chicago) |
Line 85: | Line 85: |
* Kim * King |
* WonGeun Kim (CUNY) * Simon King (FSU Jena, Germany) |
Line 91: | Line 91: |
* Ly | * Megan Ly (Boulder) |
Line 96: | Line 96: |
* Poudel | * Anup Poudel (Loyola) |
Line 98: | Line 98: |
* Ben Salisbury (U Central Michigan) | * Ben Salisbury (Central Michigan U) |
Line 100: | Line 100: |
* Schultze | * Adam Schultze (Loyola Chicago and SUNY Albany) * George H. Seelinger (Loyola Chicago) * Mark Shimozono (Virginia Tech) |
Line 108: | Line 110: |
* Zhou * George H. Seelinger (Loyola Chicago) |
== Abstracts == ||||<tablewidth="80%" style="background-color: #d63366; text-align: left; color: #FFFFFF; border:none;"> '''Monday''' || ||<style="width: 17%; text-align: left; border-left:none; border-right:none;"> <<Anchor(Saliola)>>'''Franco Saliola''' ||<style="width: 63%; text-align: left; border-left:none; border-right:none;"> ''Let's Start Using Sage!'' || ||||<( style="border:none;"> A whirlwind tour of what Sage can and cannot do (and why you should care).<<BR>> || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Doty)>>'''Stephen Doty''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Getting Started with the Sagemath Cloud'' || ||||<( style="border:none;"> Sagemath Cloud is a recent project to make Sage (and much more: e.g., Python, R, LaTeX, Terminal) available in any modern browser, without the need to install anything on the computer. This will be an introduction, with no prerequisites.<<BR>> || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Muthiah)>>'''Dinakar Muthiah''' ||<style="text-align: left; border-left:none; border-right:none;"> ''TBA'' || ||||<( style="border:none;"> ...<<BR>> || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Bergeron)>>'''Nantel Bergeron''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Homogeneous, Non-commutative Gröbner Bases'' || ||||<( style="border:none;"> Computing a non-commutative Gröbner basis takes an extremely long time. I will present the algorithm and indicate where it could be parallelized...<<BR>> || ||||<style="background-color: #d63366; text-align: left; color: #FFFFFF; border:none;"> '''Tuesday''' || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Schilling)>>'''Anne Schilling''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Algebraic Combinatorics in Sage: How to use it, make it, and get it into Sage'' || ||||<( style="border:none;"> We will very briefly discuss the history of combinatorics in Sage and give some examples on how to use some features like crystals, permutations and words. We will then implement some new missing features together and see how to get them into Sage.<<BR>> || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Mark)>>'''Mark A. & George T.''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Code collaboration in SAGE and other open source projects'' || ||||<( style="border:none;"> We will have a brief introduction to the typical organizational structures and technologies used by large-scale open source projects and how one can contribute at various levels in each. This will be followed by a tutorial for working collaboratively on code to contribute directly to the SAGE environment.<<BR>> || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Zabrocki)>>'''Mike Zabrocki''' ||<style="text-align: left; border-left:none; border-right:none;"> ''How to program a combinatorial Hopf algebra (with bases)'' || ||||<( style="border:none;"> I will review the structure of the code for combinatorial Hopf algebras (symmetric functions/partitions, quasi-symmetric functions/compositions, non-commutative symmetric functions/compositions, symmetric functions in non-commuting variables/set partitions) that are already in Sage and explain how to create a new combinatorial Hopf algebra on another set of combinatorial objects. I will also point out the ongoing work on open tickets to implement other combinatorial Hopf algebras (packed words #15611, FQSym, WQSym, PQSym #13793, PBT/Loday-Ronco #13855)<<BR>> || ||||<style="background-color: #d63366; text-align: left; color: #FFFFFF; border:none;"> '''Wednesday''' || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Salisbury)>>'''Ben Salisbury''' ||<style="text-align: left; border-left:none; border-right:none;"> ''TBA'' || ||||<( style="border:none;"> ...<<BR>> || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Tingley)>>'''Peter Tingley''' ||<style="text-align: left; border-left:none; border-right:none;"> ''TBA'' || ||||<( style="border:none;"> ...<<BR>> || ||||<style="background-color: #d63366; text-align: left; color: #FFFFFF; border:none;"> '''Thursday''' || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(King)>>'''Simon King''' ||<style="text-align: left; border-left:none; border-right:none;"> ''An F5 algorithm for modules over path algebra quotients and the computation of Loewy layers'' || ||||<( style="border:none;"> The F5 algorithm is a signature based algorithm to compute Gröbner bases for modules over polynomial rings. The F5 signature allows to exploit commutativity relations in order to avoid redundant computations. When considering modules over path algebra quotients, one can instead exploit the quotient relations to avoid redundancies. <<BR>> <<BR>>For my applications, it is important that Gröbner bases are actually not more than a by-product of the F5 algorithm. Indeed, the F5 signature provides additional information: If the quotient algebra is a basic algebra and if a negative degree monomial ordering is used, then the F5 signature allows to read off the Loewy layers of the module.<<BR>> || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Lauve)>>'''Aaron Lauve''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Convolution Powers: step by step'' || ||||<( style="border:none;"> I share my personal story (I want to say "natural progression" but I'm sure it's nothing of the kind) from perceived gap in the Sage code for Hopf algebras to sage-trac ticket submission.<<BR>> || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Seelinger)>>'''George Seelinger''' ||<style="text-align: left; border-left:none; border-right:none;"> ''TBA'' || ||||<( style="border:none;"> ...<<BR>> || ||<style="text-align: left; border-left:none; border-right:none;"> <<Anchor(Judge)>>'''Jonathan Judge''' ||<style="text-align: left; border-left:none; border-right:none;"> ''Root Multiplicities for Kac-Moody Algebras in Sage'' || ||||<( style="border:none;"> Root multiplicities are fundamental data in the structure theory of Kac-Moody algebras. We will give a brief survey on root multiplicities that highlights the differences between finite, affine, and indefinite types. Then we will describe the two main ways that these multiplicities are computed, namely Berman-Moody's formula and Peterson's recurrent formula. Lastly, we demonstrate an implementation of Peterson's recurrent formula in Sage.<<BR>> || ||||<style="background-color: #d63366; text-align: left; color: #FFFFFF; border:none;"> '''Friday''' || ||<style="text-align: left; border-left:none; border-right:none;"> '''open''' ||<style="text-align: left; border-left:none; border-right:none;"> ''...'' || |
Sage Days 65 in Chicago
When and where?
June 8-12, 2015, at Loyola University Chicago, in Chicago, Ill., USA.
Specifically, IES Building (#38), Rooms 123 & 124.
Tentative Schedule
|
Mon |
Tue |
Wed |
Thu |
Fri |
9:30 |
Coffee |
Coffee |
Coffee |
Coffee |
Coffee |
9:45 |
|||||
10:00 |
open |
||||
10:15 |
|||||
10:30 |
|||||
10:45 |
|||||
11:00 |
Project Intros |
Tutorial: Thiruvathukal+Albert |
Tutorial: Tingley |
Tutorial: Lauve |
Tutorial: open |
11:15 |
|||||
11:30 |
Tutorial: Doty |
||||
11:45 |
|||||
12:00 |
Lunch |
Lunch / Free Afternoon |
Lunch |
Final Progress Reports |
|
12:15 |
Lunch |
||||
12:30 |
|||||
12:45 |
|
||||
13:00 |
|||||
13:15 |
|||||
13:30 |
|||||
13:45 |
|||||
14:00 |
|||||
14:15 |
|||||
14:30 |
|||||
14:45 |
|||||
15:00 |
Coffee |
Coffee |
|||
15:15 |
|||||
15:30 |
Coffee |
Small groups (coding/tutorials) |
Small groups (coding/tutorials) |
||
15:45 |
|||||
16:00 |
Small groups (coding/tutorials) |
||||
16:15 |
|||||
16:30 |
|||||
16:45 |
|||||
17:00 |
Progress Reports |
Progress Reports |
|||
17:15 |
|||||
17:30 |
Progress Reports |
|
|
||
17:45 |
|||||
18:00 |
|
||||
18:15 |
|||||
18:30 |
|||||
18:45 |
|||||
19:00 |
Goose Island Brew Pub |
Main Focci
- We develop code for SAGE support of MV-polytopes and affine crystals.
- We develop code for SAGE support of combinatorial Hopf algebras.
We get newcomers to SAGE as up to speed as possible in a week!
(Personal) Goals for the Week
Participants should feel free to add to this list in advance of the meeting. Anonymous contributions are okay.
- Develop code for Hopf monoids in species (Lauve)
- Learn how to use SAGE in my classroom
- Resume coding basic algebraic structure for KLR-algebras, quantum shuffle algebras, etc (Im)
Start a wiki for combinatorial Hopf algebras, in the format of FindStat (Pang)
- Crystals of tableaux for the Lie superalgebra gl(m|n) (Salisbury)
- improve NC-Grobner basis calculations, implement dual Quasi-Schur basis #18447 (Zabrocki)
- Non-commutative version of Faugere's F5 algorithm in Sage (King)
Code test for satisfaction of A_\infty-algebra relations (Fansler)
Participants
- Darlayne Addabbo (U Illinois)
- Mark V. Albert (Loyola Chicago)
- N. Bergeron
- Kevin Dilks (U Minnesota)
- Steve Doty (Loyola Chicago)
- Merv Fansler (Millersville U)
- Gabriel Feinberg (Haverford College)
- Emily Gunawan (U Minnesota)
- Christine Haught (Loyola Chicago)
- Mee Seong Im (U Illinois and USMA)
- Jonathan Judge (UConn)
WonGeun Kim (CUNY)
- Simon King (FSU Jena, Germany)
- Michael Kratochvil (Loyola Chicago)
- Jonathan Lamar (U Colorado)
- Aaron Lauve (Loyola Chicago)
- Jake Levinson (U Michigan)
- Megan Ly (Boulder)
- Dinakar Muthiah (U Toronto)
- Amy Pang (LaCIM, UQAM)
Kyle Petersen (DePaul U, tentative)
- Viviane Pons (LRI, U Paris-Sud)
- Anup Poudel (Loyola)
- Franco Saliola (UQAM)
- Ben Salisbury (Central Michigan U)
- Anne Schilling (UC Davis)
- Adam Schultze (Loyola Chicago and SUNY Albany)
- George H. Seelinger (Loyola Chicago)
- Mark Shimozono (Virginia Tech)
Bridget Tenner (DePaul U, tentative)
- George Thiruvathukal (Loyola Chicago)
- Thomas (tentative)
- Peter Tingley (Loyola Chicago)
- Yannic Vargas (UQAM)
- Panupong Vichitkunakorn (U Illinois)
- Mike Zabrocki (York U)
Abstracts
Monday |
|
Franco Saliola |
Let's Start Using Sage! |
A whirlwind tour of what Sage can and cannot do (and why you should care). |
|
Stephen Doty |
Getting Started with the Sagemath Cloud |
Sagemath Cloud is a recent project to make Sage (and much more: e.g., Python, R, LaTeX, Terminal) available in any modern browser, without the need to install anything on the computer. This will be an introduction, with no prerequisites. |
|
Dinakar Muthiah |
TBA |
... |
|
Nantel Bergeron |
Homogeneous, Non-commutative Gröbner Bases |
Computing a non-commutative Gröbner basis takes an extremely long time. I will present the algorithm and indicate where it could be parallelized... |
|
Tuesday |
|
Anne Schilling |
Algebraic Combinatorics in Sage: How to use it, make it, and get it into Sage |
We will very briefly discuss the history of combinatorics in Sage and give some examples on how to use some features like crystals, permutations and words. We will then implement some new missing features together and see how to get them into Sage. |
|
Mark A. & George T. |
Code collaboration in SAGE and other open source projects |
We will have a brief introduction to the typical organizational structures and technologies used by large-scale open source projects and how one can contribute at various levels in each. This will be followed by a tutorial for working collaboratively on code to contribute directly to the SAGE environment. |
|
Mike Zabrocki |
How to program a combinatorial Hopf algebra (with bases) |
I will review the structure of the code for combinatorial Hopf algebras (symmetric functions/partitions, quasi-symmetric functions/compositions, non-commutative symmetric functions/compositions, symmetric functions in non-commuting variables/set partitions) that are already in Sage and explain how to create a new combinatorial Hopf algebra on another set of combinatorial objects. I will also point out the ongoing work on open tickets to implement other combinatorial Hopf algebras (packed words #15611, FQSym, WQSym, PQSym #13793, PBT/Loday-Ronco #13855) |
|
Wednesday |
|
Ben Salisbury |
TBA |
... |
|
Peter Tingley |
TBA |
... |
|
Thursday |
|
Simon King |
An F5 algorithm for modules over path algebra quotients and the computation of Loewy layers |
The F5 algorithm is a signature based algorithm to compute Gröbner bases for modules over polynomial rings. The F5 signature allows to exploit commutativity relations in order to avoid redundant computations. When considering modules over path algebra quotients, one can instead exploit the quotient relations to avoid redundancies. |
|
Aaron Lauve |
Convolution Powers: step by step |
I share my personal story (I want to say "natural progression" but I'm sure it's nothing of the kind) from perceived gap in the Sage code for Hopf algebras to sage-trac ticket submission. |
|
George Seelinger |
TBA |
... |
|
Jonathan Judge |
Root Multiplicities for Kac-Moody Algebras in Sage |
Root multiplicities are fundamental data in the structure theory of Kac-Moody algebras. We will give a brief survey on root multiplicities that highlights the differences between finite, affine, and indefinite types. Then we will describe the two main ways that these multiplicities are computed, namely Berman-Moody's formula and Peterson's recurrent formula. Lastly, we demonstrate an implementation of Peterson's recurrent formula in Sage. |
|
Friday |
|
open |
... |
Organizers
- ALBERT, Mark V. (Loyola Chicago -- Computer Science)
- LAUVE, Aaron (Loyola Chicago -- Mathematics)
- TINGLEY, Peter (Loyola Chicago -- Mathematics)
Web page
http://math.luc.edu/sagedays/ (with information about housing)