⇤ ← Revision 1 as of 2007-09-30 13:20:29
Size: 57
Comment:
|
Size: 1257
Comment: status update
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
See http://perso.ens-lyon.fr/damien.stehle/english.html | [http://perso.ens-lyon.fr/damien.stehle/english.html Damien Stehle]'s fpLLL code is wrapped at [http://trac.sagemath.org/sage_trac/ticket/723 #723] or [http://sage.math.washington.edu/home/malb/fplll.patch fplll.patch] respectively. For some problems, this gives quite good performance already: {{{#!python sage: B = MatrixSpace(IntegerRing(), 50, 51)(0) sage: for i in range(50): B[i,0] = ZZ.random_element(2**10000) ....: sage: for i in range(50): B[i,i+1] = 1 ....: sage: time C = B.LLL('fpLLL:fast') CPU times: user 9.54 s, sys: 0.00 s, total: 9.54 s Wall time: 9.56 sage: C.is_LLL_reduced() True sage: BM = B._magma_() sage: time CM = BM.LLL() CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 15.20 sage: time magma.eval("CM := LLL(%s:Fast:=1)"%BM.name()) CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 11.68 }}} However, the main strength of MAGMA's LLL is that it chooses a reasonably 'good' LLL implementation automatically. This is described in Damien Stehle's [http://perso.ens-lyon.fr/damien.stehle/FPLLL_SURVEY.html paper] and timings can be found in some of his [http://magma.maths.usyd.edu.au/Magma2006/talks/stehle.pdf slides]. For those examples SAGE seems to perform quite poorly. |
[http://perso.ens-lyon.fr/damien.stehle/english.html Damien Stehle]'s fpLLL code is wrapped at [http://trac.sagemath.org/sage_trac/ticket/723 #723] or [http://sage.math.washington.edu/home/malb/fplll.patch fplll.patch] respectively. For some problems, this gives quite good performance already:
Toggle line numbers
1 sage: B = MatrixSpace(IntegerRing(), 50, 51)(0)
2 sage: for i in range(50): B[i,0] = ZZ.random_element(2**10000)
3 ....:
4 sage: for i in range(50): B[i,i+1] = 1
5 ....:
6 sage: time C = B.LLL('fpLLL:fast')
7 CPU times: user 9.54 s, sys: 0.00 s, total: 9.54 s
8 Wall time: 9.56
9
10 sage: C.is_LLL_reduced()
11 True
12
13 sage: BM = B._magma_()
14 sage: time CM = BM.LLL()
15 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
16 Wall time: 15.20
17
18 sage: time magma.eval("CM := LLL(%s:Fast:=1)"%BM.name())
19 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
20 Wall time: 11.68
However, the main strength of MAGMA's LLL is that it chooses a reasonably 'good' LLL implementation automatically. This is described in Damien Stehle's [http://perso.ens-lyon.fr/damien.stehle/FPLLL_SURVEY.html paper] and timings can be found in some of his [http://magma.maths.usyd.edu.au/Magma2006/talks/stehle.pdf slides]. For those examples SAGE seems to perform quite poorly.