Attachment 'tutorial-using-free-modules.txt'
Download 1 Tutorial: Using Free Modules and Vector Spaces
2
3 <span id="tutorial-using-free-modules"></span>
4
5 <p>In this tutorial, we show how to construct and manipulate free modules
6 and vector spaces and their elements.</p>
7 <p>Sage currently provides two implementations of free modules:
8 <a href="#id1"><span class="problematic" id="id2">:class:`FreeModule`</span></a> and <a href="#id3"><span class="problematic" id="id4">:class:`CombinatorialFreeModule`</span></a>. The
9 distinction between the two is mostly an accident in history. The
10 later allows for the basis to be indexed by any kind of objects,
11 instead of just $0,1,2,...$. They also differ by feature set and
12 efficiency. Eventually, both implementations will be merged under the
13 name <a href="#id5"><span class="problematic" id="id6">:class:`FreeModule`</span></a>. In the mean time, we focus here on
14 <a href="#id7"><span class="problematic" id="id8">:class:`CombinatorialFreeModule`</span></a>. We recommend to start by browsing
15 the documentation.</p>
16
17 {{{id=0|
18 CombinatorialFreeModule?
19 ///
20 }}}
21
22 <p>We begin with a minimal example. What does this give us?</p>
23
24 {{{id=1|
25 G = Zmod(5)
26 A = CombinatorialFreeModule(ZZ, G)
27 A.an_element()
28 ///
29 2*B[0] + 2*B[1] + 3*B[2]
30 }}}
31
32 <p>We can use any set whose elements are immutable to index the
33 basis. Here are some $ZZ$-free modules; what is the indexing set for
34 the basis in each case?</p>
35 <blockquote>
36 sage: A = CombinatorialFreeModule(ZZ, CC); A.an_element()
37 B[1.00000000000000*I]
38 sage: A = CombinatorialFreeModule(ZZ, Partitions(NonNegativeIntegers(), max_part=3)); A.an_element()
39 B[[]] + 2*B[[1]] + 3*B[[2]]
40 sage: A = CombinatorialFreeModule(ZZ, ['spam', 'eggs', 42]); A.an_element()
41 2*B['eggs'] + 2*B['spam'] + 3*B[42]</blockquote>
42
43 {{{id=2|
44 A = CombinatorialFreeModule(ZZ, ([1],[2],[3])); A.an_element()
45 ///
46 Traceback (most recent call last):
47 TypeError: unhashable type: 'list'
48 }}}
49
50 <p>We can customize the name of the basis however we want:</p>
51
52 {{{id=3|
53 A = CombinatorialFreeModule(ZZ, Zmod(5), prefix='a'); A.an_element()
54 ///
55 a[0] + 3*a[1] + 3*a[2]
56 }}}
57
58 <p>Let us do some arithmetic with elements of $A$:</p>
59
60 {{{id=4|
61 f = A.an_element(); f
62 ///
63 a[0] + 3*a[1] + 3*a[2]
64 }}}
65
66 {{{id=5|
67 2*f
68 ///
69 2*a[0] + 6*a[1] + 6*a[2]
70 }}}
71
72 {{{id=6|
73 2*f - f
74 ///
75 a[0] + 3*a[1] + 3*a[2]
76 }}}
77
78 <p>This does not work yet:</p>
79
80 {{{id=7|
81 a[0] + 3*a[1]
82 ///
83 Traceback (most recent call last):
84 NameError: name 'a' is not defined
85 }}}
86
87 <p>To construct elements directly, we must first get the basis for the
88 module:</p>
89
90 {{{id=8|
91 a = A.basis()
92 a[0] + 3*a[1]
93 ///
94 a[0] + 3*a[1]
95 }}}
96
97 <p>Copy-pasting works if the prefix matches the name of the basis:</p>
98
99 {{{id=9|
100 a[0] + 3*a[1] + 3*a[2] == f
101 ///
102 True
103 }}}
104
105 <p>Be careful, that the input is currently <em>not</em> checked:</p>
106
107 {{{id=10|
108 a['is'] + a['this'] + a['a'] + a['bug']
109 ///
110 a['a'] + a['bug'] + a['is'] + a['this']
111 }}}
112
113 {{{id=11|
114 a
115 ///
116 Lazy family (Term map from Ring of integers modulo 5 to Free module generated by Ring of integers modulo 5 over Integer Ring(i))_{i in Ring of integers modulo 5}
117 }}}
118
119 <p><tt class="docutils literal"><span class="pre">A.basis()</span></tt> models the family $(B_i)_{i in ZZ_5}$. See the
120 documentation for <a href="#id9"><span class="problematic" id="id10">:class:`Family`</span></a> for more information:</p>
121
122 {{{id=12|
123 Family?
124 ///
125 }}}
126
127 <p>The elements of our module come with many methods for
128 exploring and manipulating them:</p>
129 <!-- skip: -->
130
131 {{{id=13|
132 f.
133 ///
134 }}}
135
136 <p>Some notation:</p>
137 <blockquote>
138 <ul>
139 <li><p class="first"><em>term</em>: <tt class="docutils literal"><span class="pre">coefficient</span> <span class="pre">*</span> <span class="pre">basis_element</span></tt></p>
140 </li>
141 <li><p class="first"><em>monomial</em>: <tt class="docutils literal"><span class="pre">basis_element</span></tt> <em>without</em> a coefficient</p>
142 </li>
143 <li><p class="first"><em>support</em>: the index of a <tt class="docutils literal"><span class="pre">basis_element</span></tt></p>
144 </li>
145 <li><p class="first"><em>item</em> : a <a href="#id11"><span class="problematic" id="id12">:class:`tuple`</span></a> <tt class="docutils literal"><span class="pre">(index,</span> <span class="pre">coefficient)</span></tt></p>
146
147 </li>
148 </ul>
149 </blockquote>
150 <p>Note that elements are printed starting with the <em>least</em> index (for
151 lexicographic order by default). Leading/trailing refers to the
152 greatest/least index, respectively:</p>
153
154 {{{id=14|
155 f
156 ///
157 a[0] + 3*a[1] + 3*a[2]
158 }}}
159
160 {{{id=15|
161 "Leading term: ",f.leading_term()
162 ///
163 Leading term: 3*a[2]
164 }}}
165
166 {{{id=16|
167 print "Leading monomial: ",f.leading_monomial()
168 ///
169 Leading monomial: a[2]
170 }}}
171
172 {{{id=17|
173 print "Leading support: ",f.leading_support()
174 ///
175 Leading support: 2
176 }}}
177
178 {{{id=18|
179 print "Leading coefficient: ",f.leading_coefficient()
180 ///
181 Leading coefficient: 3
182 }}}
183
184 {{{id=19|
185 print "Leading item: ",f.leading_item()
186 ///
187 Leading item: (2, 3)
188 }}}
189
190 {{{id=20|
191 f.leading_term
192 print "Support: ",f.support()
193 ///
194 Support: [0, 1, 2]
195 }}}
196
197 {{{id=21|
198 print "Monomials: ",f.monomials()
199 ///
200 Monomials: [a[0], a[1], a[2]]
201 }}}
202
203 {{{id=22|
204 print "Coefficients: ",f.coefficients()
205 ///
206 Coefficients: [1, 3, 3]
207 }}}
208
209 <p>We can iterate through the items in an element:</p>
210
211 {{{id=23|
212 for index, coeff in f:
213 print "The coefficient of a_{%s} is %s"%(index, coeff)
214 ///
215 The coefficient of a_{0} is 1The coefficient of a_{1} is 3The coefficient of a_{2} is 3
216 }}}
217
218 {{{id=24|
219 # This uses the fact that f can be thought of as a dictionary index-->coefficient
220 print f[0], f[1], f[2]
221 ///
222 1 3 3
223 }}}
224
225 {{{id=25|
226 # This dictionary can be accessed explicitly with the monomial_coefficients method
227 f.monomial_coefficients()
228 ///
229 {0: 1, 1: 3, 2: 3}
230 }}}
231
232 <p>The parent ($A$ in our example) has several utility methods for
233 constructing elements:</p>
234
235 {{{id=26|
236 A.
237 A.zero()
238 ///
239 0
240 }}}
241
242 {{{id=27|
243 A.sum_of_monomials(i for i in Zmod(5) if i > 2)
244 ///
245 a[3] + a[4]
246 }}}
247
248 {{{id=28|
249 A.sum_of_terms((i+1,i) for i in Zmod(5) if i > 2)
250 ///
251 4*a[0] + 3*a[4]
252 }}}
253
254 {{{id=29|
255 A.sum(ZZ(i)*a[i+1] for i in Zmod(5) if i > 2) # Note coeff is not (currently) implicitly coerced
256 ///
257 4*a[0] + 3*a[4]
258 }}}
259
260 <p>Note that it is safer to use <tt class="docutils literal"><span class="pre">A.sum()</span></tt> than to use <tt class="docutils literal"><span class="pre">sum()</span></tt>, in
261 case the input is an empty iterable:</p>
262
263 {{{id=30|
264 print A.sum([]),':', parent(A.sum([]))
265 ///
266 0 : Free module generated by Ring of integers modulo 5 over Integer Ring
267 }}}
268
269 {{{id=31|
270 print sum([]),':', parent(sum([]))
271 ///
272 0 : <type 'int'>
273 }}}
274
275 <p>The <tt class="docutils literal"><span class="pre">map</span></tt> methods are useful to transform elements:</p>
276
277 {{{id=32|
278 f.map_
279 print f,"-->", f.map_support (lambda i : i+3)
280 ///
281 a[0] + 3*a[1] + 3*a[2] --> 3*a[0] + a[3] + 3*a[4]
282 }}}
283
284 {{{id=33|
285 print f,"-->", f.map_coefficients(lambda c : c-1)
286 ///
287 a[0] + 3*a[1] + 3*a[2] --> 2*a[1] + 2*a[2]
288 }}}
289
290 {{{id=34|
291 print f,"-->", f.map_term (lambda i,c: (i+3,c-1))
292 ///
293 a[0] + 3*a[1] + 3*a[2] --> 2*a[0] + 2*a[4]
294 }}}
295
296 <p><tt class="docutils literal"><span class="pre">f.map_mc</span></tt> is a deprecated synonym for <tt class="docutils literal"><span class="pre">f.map_term</span></tt>.</p>
297 <p>Note that <tt class="docutils literal"><span class="pre">term</span></tt> and <tt class="docutils literal"><span class="pre">item</span></tt> are not yet used completely consistently.</p>
Attached Files
To refer to attachments on a page, use attachment:filename, as shown below in the list of files. Do NOT use the URL of the [get] link, since this is subject to change and can break easily.You are not allowed to attach a file to this page.