Attachment 'tutorial-implementing-algebraic-structures.txt'
Download 1 Tutorial: Implementing Algebraic Structures
2
3 <span id="tutorial-implementing-algebraic-structures"></span>
4
5
6
7 <p>This tutorial will discuss five concepts:</p>
8 <ul class="simple">
9 <li>constructing and manipulating new modules/vector spaces</li>
10 <li>adding more algebraic structure</li>
11 <li>defining morphisms</li>
12 <li>defining coercions and conversions</li>
13 <li>algebraic structures with several realizations</li>
14 </ul>
15 <p>At the end of this tutorial, the reader should be able to reimplement
16 by himself the example of algebra with several realizations:</p>
17
18 {{{id=0|
19 Sets().WithRealizations()
20 ///
21 }}}
22
23 <p>Namely, we consider an algebra $A(S)$ whose basis is indexed by the
24 subsets $s$ of a given set $S$. $A(S)$ is endowed with three natural
25 basis: <tt class="docutils literal"><span class="pre">F</span></tt>, <tt class="docutils literal"><span class="pre">In</span></tt>, <tt class="docutils literal"><span class="pre">Out</span></tt>; in the first basis, the product is
26 given by the union of the indexing sets. The <tt class="docutils literal"><span class="pre">In</span></tt> basis and <tt class="docutils literal"><span class="pre">Out</span></tt>
27 basis are defined respectively by:</p>
28 <blockquote>
29
30 <p>Unknown directive type "math".</p>
31 <pre class="literal-block">
32 .. math::
33
34 In_s = \sum_{ t\subset s} F_t \qquad
35 F_s = \sum_{ t\supset s} Out_t
36
37
38 </pre></blockquote>
39 <p>Each such basis gives a realization of $A$, where the elements are
40 represented by their expansion in this basis. In the running exercises
41 we will progressively implement this algebra and its three
42 realizations, with coercions and mixed arithmetic between them.</p>
43 <p>This tutorial heavily depends on the <a href="#id22"><span class="problematic" id="id23">`tutorial-using-free-modules`_</span></a>.</p>
44
45 <h1>Subclassing free modules and including category information</h1>
46 <p>As a warm-up, we implement the group algebra of the additive group
47 $ZZ/5ZZ$. Of course this is solely for pedagogical purposes; group
48 algebras are already implemented (see <tt class="docutils literal"><span class="pre">ZMod(5).algebra(ZZ)</span></tt>). Recall
49 that a fully functional $ZZ$-module over this group can be created
50 with the simple command:</p>
51
52 {{{id=1|
53 A = CombinatorialFreeModule(ZZ, Zmod(5), prefix='a')
54 ///
55 }}}
56
57 <p>We reproduce the same, but by deriving a subclass of
58 <a href="#id2"><span class="problematic" id="id3">:class:`CombinatorialFreeModule`</span></a>:</p>
59
60 {{{id=2|
61 class MyCyclicGroupModule(CombinatorialFreeModule):
62 """An absolutely minimal implementation of a module whose basis is a cyclic group"""
63 def __init__(self, R, n, *args, **kwargs):
64 CombinatorialFreeModule.__init__(self, R, Zmod(n), *args, **kwargs)
65 ///
66 }}}
67
68 {{{id=3|
69 A = MyCyclicGroupModule(QQ, 6, prefix='a') # or 4 or 5 or 11 ...
70 a = A.basis()
71 A.an_element()
72 ///
73 a[0] + 3*a[1] + 3*a[2]
74 }}}
75
76 <p>We now want to endow $A$ with its natural product structure, to get
77 the desired group algebra. To define a multiplication, we should be in
78 a category where multiplication makes sense, which is not yet the
79 case:</p>
80
81 {{{id=4|
82 A.category()
83 ///
84 Category of modules with basis over Rational Field
85 }}}
86
87 <p>We can look at the available categories from the documentation in the
88 reference manual: <a class="reference external" href="http://sagemath.com/doc/reference/categories.html">http://sagemath.com/doc/reference/categories.html</a></p>
89 <p>Or we can use introspection:</p>
90
91 {{{id=5|
92 sage.categories. # Look through the list of categories to pick one we want
93 ///
94 }}}
95
96 <p>Once we have chosen an appropriate category (here
97 <a href="#id4"><span class="problematic" id="id5">:class:`AlgebrasWithBasis`</span></a>), one can look at one example:</p>
98
99 {{{id=6|
100 E = AlgebrasWithBasis(QQ).example(); E
101 ///
102 An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field
103 }}}
104
105 {{{id=7|
106 e = E.an_element(); e
107 ///
108 B[word: ] + 2*B[word: a] + 3*B[word: b]
109 }}}
110
111 <p>and browse through its code:</p>
112
113 {{{id=8|
114 E??
115 ///
116 }}}
117
118 <p>This code is meant as a template from which to start implementing a
119 new algebra. In particular it suggests that we need to implement the
120 methods <tt class="docutils literal"><span class="pre">product_on_basis</span></tt>, <tt class="docutils literal"><span class="pre">one_basis</span></tt>, <tt class="docutils literal"><span class="pre">_repr_</span></tt> and
121 <tt class="docutils literal"><span class="pre">algebra_generators</span></tt>. Another way to get this list of methods is to
122 ask the category (TODO: find a slicker idiom for this):</p>
123
124 {{{id=9|
125 from sage.misc.abstract_method import abstract_methods_of_class
126 abstract_methods_of_class(AlgebrasWithBasis(QQ).element_class)
127 ///
128 {'required': [], 'optional': ['_add_', '_mul_']}
129 }}}
130
131 {{{id=10|
132 abstract_methods_of_class(AlgebrasWithBasis(QQ).parent_class)
133 ///
134 {'required': ['__contains__'], 'optional': ['one_basis', 'product_on_basis']}
135 }}}
136
137 <p class="first admonition-title">Warning</p>
138 <p class="last">the result above is not yet necessarily complete; many</p>
139
140
141 <p>required methods in the categories are not yet marked as
142 <a href="#id6"><span class="problematic" id="id7">:function:`abstract_methods`</span></a>. We also recommend browsing the
143 documentation of this category: <a href="#id8"><span class="problematic" id="id9">:class:`AlgebrasWithBasis`</span></a>.</p>
144
145 <p>Here is the obtained implementation of the group algebra:</p>
146
147 {{{id=11|
148 class MyCyclicGroupAlgebra(CombinatorialFreeModule):
149
150 def __init__(self, R, n, **keywords):
151 self._group = Zmod(n)
152 CombinatorialFreeModule.__init__(self, R, self._group,
153 category=AlgebrasWithBasis(R), **keywords)
154
155 def product_on_basis(self, left, right):
156 return self.monomial( left + right )
157
158 def one_basis(self):
159 return self._group.zero()
160
161 def algebra_generators(self):
162 return Family( [self.monomial( self._group(1) ) ] )
163
164 def _repr_(self):
165 return "Jason's group algebra of %s over %s"%(self._group, self.base_ring())
166 ///
167 }}}
168
169 <p>Some notes about this implementation:</p>
170 <ul>
171 <li><p class="first">Alternatively, we could have defined <tt class="docutils literal"><span class="pre">product</span></tt> instead of
172 <tt class="docutils literal"><span class="pre">product_on_basis</span></tt>:</p>
173 <pre class="literal-block">
174 ... # def product(self, left, right):
175 ... # return ## something ##
176
177 </pre></li>
178 <li><p class="first">For the sake of readability in this tutorial, we have stripped out
179 all the documentation strings. Of course all of those should be
180 present as in <tt class="docutils literal"><span class="pre">E</span></tt>.</p>
181 </li>
182 <li><p class="first">The purpose of <tt class="docutils literal"><span class="pre">**keywords</span></tt> is to pass down options like
183 <tt class="docutils literal"><span class="pre">prefix</span></tt> to <a href="#id10"><span class="problematic" id="id11">:class:`CombinatorialFreeModules`</span></a>.</p>
184
185 </li>
186 </ul>
187 <p>Let us do some calculations:</p>
188
189 {{{id=12|
190 A = MyCyclicGroupAlgebra(QQ, 2, prefix='a') # or 4 or 5 or 11 ...
191 a = A.basis();
192 f = A.an_element();
193 A, f
194 ///
195 (Jason's group algebra of the cyclic group Zmod(2) over Rational Field, a[0] + 3*a[1])
196 }}}
197
198 {{{id=13|
199 f * f
200 ///
201 10*a[0] + 6*a[1]
202 }}}
203
204 {{{id=14|
205 f.
206 f.is_idempotent()
207 ///
208 False
209 }}}
210
211 {{{id=15|
212 A.one()
213 ///
214 a[0]
215 }}}
216
217 {{{id=16|
218 x = A.algebra_generators().first() # Typically x,y, ... = A.algebra_generators()
219 [x^i for i in range(4)]
220 ///
221 [a[0], a[1], a[0], a[1]]
222 }}}
223
224 {{{id=17|
225 g = 2*a[1]; (f + g)*f == f*f + g*f
226 ///
227 True
228 }}}
229
230 <p>This seems to work fine, but we would like to put more stress on our
231 implementation to shake potential bugs out of it. To this end, we will
232 use <a href="#id12"><span class="problematic" id="id13">:class:`TestSuite`</span></a>, a tool which will perform many routine tests
233 on our algebra for us:</p>
234
235 {{{id=18|
236 TestSuite(A).run(verbose=True)
237 ///
238 running ._test_additive_associativity() . . . passrunning ._test_an_element() . . . passrunning ._test_associativity() . . . passrunning ._test_category() . . . passrunning ._test_elements() . . . Running the test suite of self.an_element() running ._test_category() . . . pass running ._test_not_implemented_methods() . . . pass running ._test_pickling() . . . pass passrunning ._test_not_implemented_methods() . . . passrunning ._test_one() . . . passrunning ._test_pickling() . . . passrunning ._test_prod() . . . passrunning ._test_some_elements() . . . passrunning ._test_zero() . . . pass
239 }}}
240
241 <p>For more information on categories, see:</p>
242
243 {{{id=19|
244 sage.categories.primer?
245 ///
246 }}}
247
248 <h2>Review</h2>
249 <p>We wanted to create an algebra, so we:</p>
250 <pre class="literal-block">
251 # Created the underlying vector space using :class:`CombinatorialFreeModule`
252 # Looked at ``sage.categories.<tab>`` to find an appropriate category
253 # Loaded an example of that category to see what methods we needed to write
254 # Added the category information and other necessary methods to our class
255 # Ran :class:`TestSuite` to catch potential discrepancies
256
257 </pre><h2>Exercises</h2>
258 <ol class="arabic">
259 <li><p class="first">Make a tiny modification to product_on_basis in
260 "MyCyclicGroupAlgebra" to implement the <em>dual</em> of the group algebra
261 of the cyclic group instead of its group algebra (product given by
262 $b_fb_g=delta_{f,g}bf$).</p>
263 <p>Run the <a href="#id14"><span class="problematic" id="id15">:class:`TestSuite`</span></a> tests (you may ignore the "pickling"
264 errors). What do you notice?</p>
265
266 <p>Fix the implementation of <tt class="docutils literal"><span class="pre">one</span></tt> and check that the tests now pass.</p>
267 <p>Add the hopf algebra structure. Hint: look at the example:</p>
268
269 {{{id=20|
270 C = HopfAlgebrasWithBasis(QQ).example()
271 ///
272 }}}
273
274 </li>
275 <li><p class="first">Given a set $S$, say:</p>
276
277 {{{id=21|
278 S = Set([1,2,3,4,5])
279 ///
280 }}}
281
282 <p>and a base ring, say:</p>
283
284 {{{id=22|
285 R = QQ
286 ///
287 }}}
288
289 <p>implement an $R$-algebra:</p>
290
291 {{{id=23|
292 F = SubsetAlgebraOnFundamentalBasis(S, R) # todo: not implemented
293 ///
294 }}}
295
296 <p>whose basis <tt class="docutils literal"><span class="pre">(b_s)_{s\subset</span> <span class="pre">S}</span></tt> is indexed by the subsets of <tt class="docutils literal"><span class="pre">S</span></tt>:</p>
297
298 {{{id=24|
299 Subsets(S)
300 ///
301 Subsets of {1, 2, 3, 4, 5}
302 }}}
303
304 <p>and where the product is defined by $b_s b_t = b_{scup t}$.</p>
305 </li>
306 </ol>
307
308
309
310 <h1>Morphisms</h1>
311 <p>To better understand relationships between algebraic spaces, one wants
312 to consider morphisms between them:</p>
313
314 {{{id=25|
315 A.module_morphism?
316 A = MyCyclicGroupAlgebra(QQ, 2, prefix='a')
317 B = MyCyclicGroupAlgebra(QQ, 6, prefix='b')
318 A, B
319 ///
320 (Jason's group algebra of the cyclic group Zmod(2) over Rational Field, Jason's group algebra of the cyclic group Zmod(6) over Rational Field)
321 }}}
322
323
324 {{{id=26|
325 def func_on_basis(g):
326 r"""
327 This function is the 'brain' of a (linear) morphism
328 from A --> B. The input is the index of basis
329 element of the domain (A). The output is an element of the
330 codomain (B).
331 """
332 if g==1: return B.monomial(Zmod(6)(3))
333 else: return B.one()
334 ///
335 }}}
336
337 <p>We can now define a morphism which extends this function to $A$ by
338 linearity:</p>
339
340 {{{id=27|
341 phi = A.module_morphism(func_on_basis, codomain=B)
342 f = A.an_element()
343 f
344 ///
345 a[0] + 3*a[1]
346 }}}
347
348 {{{id=28|
349 phi(f)
350 ///
351 b[0] + 3*b[3]
352 }}}
353
354 <h2>Exercise</h2>
355 <p>Define a new free module <tt class="docutils literal"><span class="pre">In</span></tt> with basis indexed by the subsets of
356 $S$, and a morphism <tt class="docutils literal"><span class="pre">phi</span></tt> from <tt class="docutils literal"><span class="pre">In</span></tt> to <tt class="docutils literal"><span class="pre">F</span></tt> defined by</p>
357 <blockquote>
358
359 <pre class="literal-block">
360 .. math:: \phi(In_s) = \sum_{ t\subset s} F_t
361
362
363
364 </pre></blockquote>
365
366
367
368 <h1>Diagonal and Triangular Morphisms</h1>
369 <p>We now illustrate how to specify that a given morphism is diagonal or
370 triangular with respect to some order on the basis which makes it
371 invertible. Currently this feature requires the domain and codomain to
372 have the same index set (in progress ...).</p>
373
374 {{{id=29|
375 X = CombinatorialFreeModule(QQ, Partitions(), prefix='x'); x = X.basis();
376 Y = CombinatorialFreeModule(QQ, Partitions(), prefix='y'); y = Y.basis();
377 ///
378 }}}
379
380 <p>A diagonal module morphism takes as argument a function whose input is
381 the index of a basis element of the domain, and whose output is the
382 coefficient of the corresponding basis element of the codomain:</p>
383
384 {{{id=30|
385 def diag_func(p):
386 if len(p)==0: return 1
387 else: return p[0]
388
389
390 diag_func(Partition([3,2,1]))
391 ///
392 3
393 }}}
394
395 {{{id=31|
396 X_to_Y = X.module_morphism(diagonal=diag_func, codomain=Y)
397 f = X.an_element();
398 f
399 ///
400 x[[]] + 2*x[[1]] + 3*x[[2]]
401 }}}
402
403 {{{id=32|
404 X_to_Y(f)
405 ///
406 y[[]] + 2*y[[1]] + 6*y[[2]]
407 }}}
408
409 <p>Python fun-fact: <tt class="docutils literal"><span class="pre">~</span></tt> is the inversion operator (but be careful with
410 int's!):</p>
411
412 {{{id=33|
413 ~2
414 ///
415 1/2
416 }}}
417
418 {{{id=34|
419 ~(int(2))
420 ///
421 -3
422 }}}
423
424 <p>Diagonal module morphisms are invertible:</p>
425
426 {{{id=35|
427 Y_to_X = ~X_to_Y
428 f = y[Partition([3])] - 2*y[Partition([2,1])]
429 f
430 ///
431 -2*y[[2, 1]] + y[[3]]
432 }}}
433
434 {{{id=36|
435 Y_to_X(f)
436 ///
437 -x[[2, 1]] + 1/3*x[[3]]
438 }}}
439
440 {{{id=37|
441 X_to_Y(Y_to_X(f))
442 ///
443 -2*y[[2, 1]] + y[[3]]
444 }}}
445
446 <p>For triangular morphisms, just like ordinary morphisms, we need a
447 function which accepts as input the index of a basis element of the
448 domain and returns an element of the codomain. We think of this
449 function as representing the columns of the matrix of the linear
450 transformation:</p>
451
452 {{{id=38|
453 def triang_on_basis(p):
454 return Y.sum_of_monomials(mu for mu in Partitions(sum(p)) if mu >= p)
455
456 triang_on_basis([3,2])
457 ///
458 y[[3, 2]] + y[[4, 1]] + y[[5]]
459 }}}
460
461 {{{id=39|
462 X_to_Y = X.module_morphism(triang_on_basis, triangular='lower', unitriangular=True, codomain=Y)
463 f = x[Partition([1,1,1])] + 2*x[Partition([3,2])];
464 f
465 ///
466 x[[1, 1, 1]] + 2*x[[3, 2]]
467 }}}
468
469
470 {{{id=40|
471 X_to_Y(f)
472 ///
473 y[[1, 1, 1]] + y[[2, 1]] + y[[3]] + 2*y[[3, 2]] + 2*y[[4, 1]] + 2*y[[5]]
474 }}}
475
476 <p>Triangular module_morphisms are also invertible, even if <tt class="docutils literal"><span class="pre">X</span></tt> and
477 <tt class="docutils literal"><span class="pre">Y</span></tt> are both infinite-dimensional:</p>
478
479 {{{id=41|
480 Y_to_X = ~X_to_Y
481 f
482 ///
483 x[[1, 1, 1]] + 2*x[[3, 2]]
484 }}}
485
486 {{{id=42|
487 Y_to_X(X_to_Y(f))
488 ///
489 x[[1, 1, 1]] + 2*x[[3, 2]]
490 }}}
491
492 <p>For details, see
493 <a href="#id16"><span class="problematic" id="id17">:meth:`ModulesWithBasis.ParentMethods.module_morphism`</span></a> (and also
494 <a href="#id18"><span class="problematic" id="id19">:class:`sage.categories.modules_with_basis.TriangularModuleMorphism`</span></a>):</p>
495
496
497 {{{id=43|
498 A.module_morphism?
499 ///
500 }}}
501
502 <h2>Exercise</h2>
503 <p>Redefine the morphism <tt class="docutils literal"><span class="pre">phi</span></tt> from the previous exercise to specify
504 that it is triangular w.r.t. inclusion of subsets, and inverse this
505 morphism. You may want to use the following comparison function as
506 <tt class="docutils literal"><span class="pre">cmp</span></tt> argument to <tt class="docutils literal"><span class="pre">modules_morphism</span></tt>:</p>
507
508 {{{id=44|
509 def subset_cmp(s, t):
510 """
511 A comparison function on sets which gives a linear extension
512 of the inclusion order.
513
514 INPUT:
515
516 - ``x``, ``y`` -- sets
517 EXAMPLES::
518
519 sage: sorted(Subsets([1,2,3]), subset_cmp)
520 [{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]
521 """
522 s = cmp(len(x), len(y))
523 if s != 0:
524 return s
525 return cmp(list(x), list(y))
526 ///
527 }}}
528
529 <h1>Coercions</h1>
530 <p>Once we have defined a morphism from $X to Y$, we can register it as
531 a coercion. This will allow Sage to apply the morphism automatically
532 whenever we combine elements of $X$ and $Y$ together. See
533 <a class="reference external" href="http://sagemath.com/doc/reference/coercion.html">http://sagemath.com/doc/reference/coercion.html</a> for more
534 information. As a training step, let us first define a morphism $X$ to
535 $h$, and register it as a coercion:</p>
536
537 {{{id=45|
538 def triang_on_basis(p):
539 return h.sum_of_monomials(mu for mu in Partitions(sum(p)) if mu >= p)
540
541 triang_on_basis([3,2])
542 ///
543 h[3, 2] + h[4, 1] + h[5]
544 }}}
545
546 {{{id=46|
547 X_to_h = X.module_morphism(triang_on_basis, triangular='lower', unitriangular=True, codomain=h)
548 X_to_h.
549 X_to_h.register_as_coercion()
550 ///
551 }}}
552
553 <p>Now we can convert elements from $X$ to $h$, but also do mixed
554 arithmetic with them:</p>
555
556 {{{id=47|
557 h(x[Partition([3,2])])
558 ///
559 h[3, 2] + h[4, 1] + h[5]
560 }}}
561
562 {{{id=48|
563 h([2,2,1]) + x[Partition([2,2,1])]
564 ///
565 2*h[2, 2, 1] + h[3, 1, 1] + h[3, 2] + h[4, 1] + h[5]
566 }}}
567
568 <h2>Exercise</h2>
569 <p>Use the inverse of <tt class="docutils literal"><span class="pre">phi</span></tt> to implement the inverse coercion from
570 <tt class="docutils literal"><span class="pre">F</span></tt> to <tt class="docutils literal"><span class="pre">In</span></tt>. Reimplement <tt class="docutils literal"><span class="pre">In</span></tt> as an algebra, with a product
571 method making it use <tt class="docutils literal"><span class="pre">phi</span></tt> and its inverse.</p>
572
573
574
575 <h1>Application: new basis and quotients of symmetric functions</h1>
576 <p>In the sequel, we show how to combine everything we have seen to
577 implement a new basis of the algebra of symmetric functions:</p>
578
579 {{{id=49|
580 SF = SymmetricFunctions(QQ); # A GradedHopfAlgebraWithBasis
581 h = SF.homogeneous() # A particular basis, indexed by partitions (with some additional magic)
582 ///
583 }}}
584
585 <p>$h$ is a graded algebra whose basis is indexed by partitions. Namely
586 <tt class="docutils literal"><span class="pre">h([i])</span></tt> represents the sum of all monomials of degree $i$:</p>
587 <blockquote>
588 sage: h([2]).expand(4)
589 x0^2 + x0*x1 + x1^2 + x0*x2 + x1*x2 + x2^2 + x0*x3 + x1*x3 + x2*x3 + x3^2</blockquote>
590 <p>and <tt class="docutils literal"><span class="pre">h(\mu)</span> <span class="pre">=</span> <span class="pre">prod(</span> <span class="pre">h(p)</span> <span class="pre">for</span> <span class="pre">p</span> <span class="pre">in</span> <span class="pre">mu</span> <span class="pre">)</span></tt>:</p>
591
592 {{{id=50|
593 h([3,2,2,1]) == h([3]) * h([2]) * h([2]) * h([1])
594 ///
595 True
596 }}}
597
598
599 {{{id=51|
600 class MySFBasis(CombinatorialFreeModule):
601 r"""
602 Note: We would typically use SymmetricFunctionAlgebra_generic
603 for this. This is as an example only.
604 """
605
606 def __init__(self, R, *args, **kwargs):
607 """ TODO: Informative doc-string and examples """
608 CombinatorialFreeModule.__init__(self, R, Partitions(), category=AlgebrasWithBasis(R), *args, **kwargs)
609 self._h = SymmetricFunctions(R).homogeneous()
610 self._to_h = self.module_morphism( self._to_h_on_basis, triangular='lower', unitriangular=True, codomain=self._h)
611 self._from_h = ~(self._to_h)
612 self._to_h.register_as_coercion()
613 self._from_h.register_as_coercion()
614
615 def _to_h_on_basis(self, la):
616 return self._h.sum_of_monomials(mu for mu in Partitions(sum(la)) if mu >= la)
617
618 def product(self, left, right):
619 return self( self._h(left) * self._h(right) )
620
621 def _repr_(self):
622 return "Jason's basis for symmetric functions over %s"%self.base_ring()
623
624 @cached_method
625 def one_basis(self):
626 r""" Returns the index of the basis element which is equal to '1'."""
627 return Partition([])
628 X = MySFBasis(QQ, prefix='x'); x = X.basis(); h = SymmetricFunctions(QQ).homogeneous()
629 f = X(h([2,1,1]) - 2*h([2,2])) # Note the capital X
630 f
631 h(f)
632 ///
633 x[[2, 1, 1]] - 3*x[[2, 2]] + 2*x[[3, 1]]h[2, 1, 1] - 2*h[2, 2]
634 }}}
635
636 {{{id=52|
637 f*f*f
638 ///
639 x[[2, 2, 2, 1, 1, 1, 1, 1, 1]] - 7*x[[2, 2, 2, 2, 1, 1, 1, 1]] + 18*x[[2, 2, 2, 2, 2, 1, 1]] - 20*x[[2, 2, 2, 2, 2, 2]] + 8*x[[3, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
640 }}}
641
642 {{{id=53|
643 h(f*f)
644 ///
645 h[2, 2, 1, 1, 1, 1] - 4*h[2, 2, 2, 1, 1] + 4*h[2, 2, 2, 2]
646 }}}
647
648 <p>As a final example, we implement a quotient of the algebra of
649 symmetric functions:</p>
650
651 {{{id=54|
652 class MySFQuotient(CombinatorialFreeModule):
653 r"""
654 The quotient of the ring of symmetric functions by the ideal generated
655 by those monomial symmetric functions whose part is larger than some fixed
656 number ``k``.
657 """
658
659 def __init__(self, R, k, prefix=None, *args, **kwargs):
660
661 # Note: Setting self._prefix is equivalent to using the prefix keyword
662 # in CombinatorialFreeModule.__init__
663
664 if prefix is not None:
665 self._prefix = prefix
666 else:
667 self._prefix = 'mm'
668
669 CombinatorialFreeModule.__init__(self, R,
670 Partitions(NonNegativeIntegers(), max_part=k),
671 category = GradedHopfAlgebrasWithBasis(R), *args, **kwargs)
672
673 self._k = k
674 self._m = SymmetricFunctions(R).monomial()
675
676 self.lift = self.module_morphism(self._m.monomial)
677 self.retract = self._m.module_morphism(self._retract_on_basis, codomain=self)
678
679 self.lift.register_as_coercion()
680 self.retract.register_as_coercion()
681
682 def _retract_on_basis(self, mu):
683 r""" Takes the index of a basis element of a monomial
684 symmetric function, and returns the projection of that
685 element to the quotient."""
686
687 if len(mu) > 0 and mu[0] > self._k:
688 return self.zero()
689 return self.monomial(mu)
690
691 @cached_method
692 def one_basis(self):
693 return Partition([])
694
695 def product(self, left, right):
696 return self( self._m(left) * self._m(right) )
697 MM = MySFQuotient(QQ, 3)
698 mm = MM.basis()
699 m = SymmetricFunctions(QQ).monomial()
700 P = Partition
701 f = mm[P([3,2,1])] + 2*mm[P([3,3])]
702 f
703 ///
704 mm[[3, 2, 1]] + 2*mm[[3, 3]]
705 }}}
706
707 {{{id=55|
708 m(f)
709 ///
710 m[3, 2, 1] + 2*m[3, 3]
711 }}}
712
713 {{{id=56|
714 (m(f))^2
715 ///
716 8*m[3, 3, 2, 2, 1, 1] + 12*m[3, 3, 2, 2, 2] + 24*m[3, 3, 3, 2, 1] + 48*m[3, 3, 3, 3] + 4*m[4, 3, 2, 2, 1] + 4*m[4, 3, 3, 1, 1] + 14*m[4, 3, 3, 2] + 4*m[4, 4, 2, 2] + 4*m[4, 4, 3, 1] + 6*m[4, 4, 4] + 4*m[5, 3, 2, 1, 1] + 4*m[5, 3, 2, 2] + 12*m[5, 3, 3, 1] + 2*m[5, 4, 2, 1] + 6*m[5, 4, 3] + 4*m[5, 5, 1, 1] + 2*m[5, 5, 2] + 4*m[6, 2, 2, 1, 1] + 6*m[6, 2, 2, 2] + 6*m[6, 3, 2, 1] + 10*m[6, 3, 3] + 2*m[6, 4, 1, 1] + 5*m[6, 4, 2] + 4*m[6, 5, 1] + 4*m[6, 6]
717 }}}
718
719 {{{id=57|
720 f^2
721 ///
722 8*mm[[3, 3, 2, 2, 1, 1]] + 12*mm[[3, 3, 2, 2, 2]] + 24*mm[[3, 3, 3, 2, 1]] + 48*mm[[3, 3, 3, 3]]
723 }}}
724
725 {{{id=58|
726 (m(f))^2 - m(f^2)
727 ///
728 4*m[4, 3, 2, 2, 1] + 4*m[4, 3, 3, 1, 1] + 14*m[4, 3, 3, 2] + 4*m[4, 4, 2, 2] + 4*m[4, 4, 3, 1] + 6*m[4, 4, 4] + 4*m[5, 3, 2, 1, 1] + 4*m[5, 3, 2, 2] + 12*m[5, 3, 3, 1] + 2*m[5, 4, 2, 1] + 6*m[5, 4, 3] + 4*m[5, 5, 1, 1] + 2*m[5, 5, 2] + 4*m[6, 2, 2, 1, 1] + 6*m[6, 2, 2, 2] + 6*m[6, 3, 2, 1] + 10*m[6, 3, 3] + 2*m[6, 4, 1, 1] + 5*m[6, 4, 2] + 4*m[6, 5, 1] + 4*m[6, 6]
729 }}}
730
731 {{{id=59|
732 MM( (m(f))^2 - m(f^2) )
733 ///
734 0
735 }}}
Attached Files
To refer to attachments on a page, use attachment:filename, as shown below in the list of files. Do NOT use the URL of the [get] link, since this is subject to change and can break easily.You are not allowed to attach a file to this page.