Size: 5597
Comment:
|
Size: 8121
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 20: | Line 20: |
=== Project 1 === '''Use twists by Dirichlet characters on modular symbols and . People: John B, Chan-Ho, Jamie W, Barinder, Mike D, M. Tip, Vincent, Jeremy West, Jen Balakrishnan |
|
Line 21: | Line 27: |
There are several subprojects | |
Line 22: | Line 29: |
* Allow to twist the function by Dirichlet characters. In particular with the Teichmüllers. | * ''Compute the conjectural order of Sha over abelian fields.'' The aim is to use the sum of twisted modular symbols to compute the order of the Tate-Shafarevich group over cubic, quintic and septic fields of small conductors for elliptic curves of small conductors. |
Line 24: | Line 31: |
. People: John B, Chan-Ho, Jamie W, Barinder, Mike D, M. Tip, Vincent | The run on John's file [[attachment: sha_fast.sage]] on cubic and quintic fields gave so far the following two tables for [[http://www.maths.nottingham.ac.uk/personal/cw/download/sha_data_3_1000_11_1000.txt|cubic fields]] and [[http://www.maths.nottingham.ac.uk/personal/cw/download/sha_data_5_1000_11_1000.txt|quintic fields]]. We need to improve the error bounds and make sure that the errors are correctly caught. |
Line 26: | Line 33: |
* Implement a function that extracts the |
We will eventually extract statistical data from it, like "How likely it is that Sha is divisibile by a given prime?" or "How often is Sha trivial?" etc. |
Line 28: | Line 35: |
. People: same as above, plus Jeremy West, Jen Balakrishnan | * ''Implement in sage twists of'' |
Line 30: | Line 37: |
* Can we compute the modular symbols (for large conductors) using complex integration ? | * ''Implement'' * Use the previous point to ''produce tables of Iwasawa invariants'' a bit like [[http://math.bu.edu/people/rpollack/Data/data.html|Pollack's tables]]. * ''Implement better Dirichlet characters.'' Add a function to a Dirichlet character that give the field fixed by the kernel. Add a function to Abelian fields that gives back the conductor and the group od Dirichlet characters. Also the current implementation of Dirichlet characters could be improved a lot: make it into a group, make it faster. === Project 2 === '''Compute the modular symbols using complex integration''' |
Line 34: | Line 49: |
The original definition of the modular symbols The project proceeds in several steps * Implement a sage function that computes the integral from a given point * For a semi-stable curve we can split up the integration path from * Find the best place to cut the line. * Compare the algorithms and implemented it in sage. === Other projects === |
|
Line 35: | Line 66: |
(not considered yet. Matt could give a talk about this later) |
|
Line 39: | Line 72: |
(not considered yet. Two papers by Delbourgo will be useful here. Or Colmez' new construction) |
Christian Wuthrich (Nottingham): p-adic L-series and Iwasawa theory
Description
Artin and Tate proved a large part of the conjecture of Birch and Swinnerton-Dyer in the function field case in the 60s. Iwasawa theory for elliptic curves as initiated by Mazur tries to use similar tools to approach the
Let
The big advantage of the
A big and difficult theorem by Kato shows half of this conjecture and Skinner and Urban claim they have shown the other half of it. As a consequence one gets that the order of vanishing of
Projects
Project 1
Use twists by Dirichlet characters on modular symbols and
- People: John B, Chan-Ho, Jamie W, Barinder, Mike D, M. Tip, Vincent, Jeremy West, Jen Balakrishnan
The
Compute the conjectural order of Sha over abelian fields. The aim is to use the sum of twisted modular symbols to compute the order of the Tate-Shafarevich group over cubic, quintic and septic fields of small conductors for elliptic curves of small conductors.
The run on John's file sha_fast.sage on cubic and quintic fields gave so far the following two tables for cubic fields and quintic fields. We need to improve the error bounds and make sure that the errors are correctly caught. We will eventually extract statistical data from it, like "How likely it is that Sha is divisibile by a given prime?" or "How often is Sha trivial?" etc.
Implement in sage twists of
p -adic L-functions. The file padic_lseries.py should be modified to allow an additional optional argument to series to compute the twist by Dirichlet characters.Implement
λ andμ invariants forp -adic power series.Use the previous point to produce tables of Iwasawa invariants a bit like Pollack's tables.
Implement better Dirichlet characters. Add a function to a Dirichlet character that give the field fixed by the kernel. Add a function to Abelian fields that gives back the conductor and the group od Dirichlet characters. Also the current implementation of Dirichlet characters could be improved a lot: make it into a group, make it faster.
Project 2
Compute the modular symbols using complex integration
- People: Megan Maguire, Erin Militzer, Jamie W, John C, Robert Bradshaw, Matt G, Chan-Ho, Thilina, Gagan, Robert Miller, Tim Dokchitser, William Stein
The original definition of the modular symbols
The project proceeds in several steps
Implement a sage function that computes the integral from a given point
τ in the upper half plane toi∞ with a given maximal error. The bounds must be rigorous.For a semi-stable curve we can split up the integration path from
r toi∞ at a pointτ and move the difficult part close to the real line using an Atkin Lehner involution to a nicer place- Find the best place to cut the line.
- Compare the algorithms and implemented it in sage.
Other projects
- Look at overconvergent modular symbols (not considered yet. Matt could give a talk about this later)
- People: John B, Matt Greenberg, Chan-Ho, Robert Bradshaw
- What happens for primes of additive reduction ? (not considered yet. Two papers by Delbourgo will be useful here. Or Colmez' new construction)
- People: Robert Miller, Megan Maguire, Erin Militzer, Barinder, Mike D, Matt Greenberg
References
Mazur, Tate, Teitelbaum, On
p -adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 84 (1986), no. 1, 1--48. At mathscinet or gdz.Greenberg Ralph, Introduction to Iwasawa Theory for Elliptic Curves, (paper) on his web page full of Iwasawa theory. Also there is the more advanced Iwasawa Theory for Elliptic Curves (paper).
Stein and Wuthrich, Computations About Tate-Shafarevich Groups Using Iwasawa Theory, preprint.
Sage Reference Manual on p-adic L-functions of elliptic curves: http://sagemath.org/doc/reference/sage/schemes/elliptic_curves/padic_lseries.html. See also nearby sections.
Lecture Notes
Modular symbols and -adic L-functions
Background reading
- As for other lectures, Silverman's book "The arithmetic of elliptic curves" contains a good background for elliptic curve, especially chapter III. We will use some further results on elliptic curves over global fields, mainly in chapter VII and X, but by far not everything there is needed.
A more concise introduction to the subject, including the discussion of how elliptic cures over
Q are linked to modular forms is in the first two chapters of Darmon's book "Rational Point on Modular Elliptic Curves".