Attachment 'sha_fast.sage'
Download 1 def minPolyGen(conductor,degree):
2 """
3 Give an integer m for which the multiplicative group of
4 of ZZ/mZZ is cyclic then for each divisor d of euler_phi(m), there
5 will be a unique subfield of Q(zeta_m) of degree d. This returns
6 this polynomial which generates such an extension.
7
8 EXAMPLE:
9 m=7, d=3
10 K.<a> = NumberField(minPolyGen(7,3))
11 """
12 n = conductor
13 d = degree
14
15 # check that the Z/nZ has cyclic multiplicative group
16 if not n % 2 == 0 and not n.is_prime_power():
17 raise ValueError, 'Invalid input because (ZZ/%sZZ)* is not cyclic' % n
18 if n % 2 == 0:
19 nprime = Integer(n/2)
20 if not nprime.is_prime_power() or nprime % 4 == 0:
21 raise ValueError, 'Invalid input because (ZZ/%sZZ)* is not cyclic' % n
22
23 # check that there will be such a field of degree d in side QQ(zeta_n)
24 if euler_phi(n) % d != 0:
25 raise ValueError, 'No field exists because %s does not divide %s=phi(%s)' % (d,euler_phi(n),n)
26
27 f = euler_phi(n)/d
28 R = IntegerModRing(n)
29 g = R.unit_gens()[0]
30 zetap = CC.zeta(n)
31
32 # create a list alpha of all the Galois conjugates
33 alpha = []
34 for i in range(d):
35 alpha.append(0)
36 for j in range(f):
37 alpha[i] += zetap^(Integer(g^(d*j+i)))
38
39 S.<x> = ZZ[]
40 the_poly = prod(x - a for a in alpha)
41 coeff = [CC(x).real_part().round() for x in the_poly.coefficients()]
42 new_poly = S(0)
43 for i in range(len(coeff)):
44 new_poly += coeff[i]*S.gen()^i
45 return new_poly
46
47 def shaOrderFast(E,K,mod_symb,m,precision=10^(-10)):
48 """
49 E = EllipticCurve/Q we want #Sha(E/K) for
50 K = Field to check over
51 mod_symb = modular symbols of E
52 m = conductor of K (should be 1 mod d)
53 precision = a precision to which we will consider something an integer
54
55 Specifically, the below algorithm will return a complex number, which should be an
56 integer, that represents the order of Sha. If the CC-number is more than <precision>
57 away then it will raise an exception
58 """
59 print '\t checking conductor %s on curve %s' % (m,E.cremona_label())
60 if E.conductor() % m == 0:
61 raise ValueError, 'field conductor m=%s was not coprime to E.conductor()=%s' % (m,E.conductor())
62 d = K.degree()
63 EK = E.change_ring(K)
64 tor_order = EK.torsion_subgroup().order()^2
65 tamagawa_factor = EK.tamagawa_product_bsd()
66 product_result = 1
67 R = IntegerModRing(m)
68 g = R.unit_gens()[0]
69 z = CC.zeta(m-1)
70 for j in range(d):
71 # creat ell_chi
72 if j == 0:
73 product_result *= mod_symb(0)
74 else:
75 product_result *= sum(z^((m-1)*j*k/d)*mod_symb(Integer(g^k)/m) for k in range(m-1))
76 real_result = product_result*tor_order/(tamagawa_factor*E.real_components()^d)
77 int_result = CC(product_result*tor_order/tamagawa_factor).real_part().round()/E.real_components()^d
78 if (real_result - int_result).abs() > precision:
79 raise ValueError, 'the result %s was too far from its nearest integer %s' % (real_result, int_result)
80 return int_result
81
82 def sha_fast(p,field_conductor_bound=100,curve_conductor_bound=20,curve_conductor_lower_bound=11,spacing=30,filename='sha_fast_data.txt', precision=10^(-10)):
83 """
84 p = degree of fields K to consider sha(E/K)
85 field_conductor_bound = bound on the conductor of the number field
86 curve_conductor_bound = UPPER bound on conductor of elliptic_curves to consider
87 curve_conductor_lower_bound = LOWER bound on conductor of elliptic_curves to consider
88 spacing = formatting
89 filename = filename if you want to specify one
90 """
91 if filename == 'sha_fast_data.txt':
92 filename = 'sha_data_%s_%s_%s_%s.txt' % (p, field_conductor_bound, curve_conductor_lower_bound, curve_conductor_bound)
93 candidates = [q for q in prime_range(field_conductor_bound) if q % p == 1]
94 print 'Candidates field conductors initialized...'
95 fields=[NumberField(minPolyGen(q,p),'a') for q in candidates]
96 print 'Fields initialized...'
97 file = open(filename, 'a')
98 print 'Writing to file %s' % filename
99 file.write('Data for fields of degree %s of conductor < %s with curves having conductor between %s and %s\n' % (p, field_conductor_bound, curve_conductor_lower_bound, curve_conductor_bound))
100 file.write('%s %s %s %s\n' % ('Curve label'.ljust(spacing), '#Sha(E/K)'.ljust(spacing), 'Field conductor'.ljust(spacing), 'Field degree'.ljust(spacing)))
101 for E in CremonaDatabase().iter_optimal([curve_conductor_lower_bound..curve_conductor_bound]):
102 print 'Beginning curve %s' % E.cremona_label()
103 try:
104 M = E.modular_symbol()
105 for q in candidates:
106 to_write = ''
107 try:
108 shaOrder = shaOrderFast(E,fields[candidates.index(q)],M,q, precision)
109 to_write = '%s %s %s %s\n' % (str(E.cremona_label()).ljust(spacing), is_square(shaOrder) and str(shaOrder).ljust(spacing) or (str(shaOrder)+'***').ljust(spacing), str(q).ljust(spacing), str(fields[candidates.index(q)].degree()))
110 except ValueError as detail:
111 to_write = '^^Curve %s threw exception:%s\n' % (E.cremona_label(), detail)
112 except:
113 to_write = '^^Curve %s threw exception: unrecorded\n' % E.cremona_label()
114 finally:
115 file.write(to_write)
116
117 except:
118 file.write('Curve %s did not compute its modular symbols correctly\n' % E.cremona_label())
119 file.close()
120 print 'Finished'
Attached Files
To refer to attachments on a page, use attachment:filename, as shown below in the list of files. Do NOT use the URL of the [get] link, since this is subject to change and can break easily.You are not allowed to attach a file to this page.