Attachment 'lp_teichmuller.sage'

Download

   1 # code to compute the series representation
   2 
   3 E = EllipticCurve('11a1')
   4 
   5 n=10; prec=10
   6 Lserie = E.padic_lseries(5)
   7 alp = Lserie.alpha(prec)
   8 MSP = E.modular_symbol()
   9 MSM = E.modular_symbol(sign=-1)
  10 
  11 p = Lserie._p
  12 bounds = Lserie._prec_bounds(n,prec)
  13 padic_prec = max(bounds[1:]) + 5
  14 res_series_prec=min(p**(n-1),prec)
  15 
  16 K = QQ
  17 gamma = K(1+p)
  18 R = PowerSeriesRing(K,'T',res_series_prec)
  19 T = R(R.gen(),res_series_prec)
  20 L = R(0) #going to be the L-series eventually
  21 one_plus_T_factor = R(1)
  22 gamma_power = K(1)
  23 teich = Lserie.teichmuller(padic_prec)
  24 pt = 2 # the power of Teichmuller
  25 p_power = p**(n-1)
  26 
  27 for j in range(p_power):
  28    s = K(0)
  29    for a in range(1,p):
  30        b = teich[a]*gamma_power
  31        if pt & 2 == 0:
  32            s += teich[a]^pt * ( (1/alp)^n * MSP((b)/(p^n) ) -
  33 (1/alp)^(n+1) * MSP((b)/(p^(n-1))) ) # mu(b + p^nZ_p)
  34        else:
  35            s += teich[a]^pt * ( (1/alp)^n * MSM((b)/(p^n) ) -
  36 (1/alp)^(n+1) * MSM((b)/(p^(n-1))) )
  37    L += s * one_plus_T_factor
  38    one_plus_T_factor *= (1+T)
  39    gamma_power *= gamma
  40 
  41 print 'L before p-adic approx is %s' % L
  42 
  43 K = Qp(p,padic_prec,print_mode='series')
  44 R = PowerSeriesRing(K,'T',res_series_prec)
  45 Lprime = R(L,res_series_prec)
  46 print 'Lprime is %s' % Lprime
  47 aj = Lprime.list()
  48 if len(aj) > 0:
  49       aj = [aj[0].add_bigoh(padic_prec-2)] +
  50 [aj[j].add_bigoh(bounds[j]) for j in range(1,len(aj))]
  51 L = R(aj,res_series_prec )
  52 if pt & 2 == 0:
  53    L = L / Lserie._E.real_components()
  54 else:
  55    L = L
  56 
  57 print 'The 5-adic L-function of 11A1 twisted by the (pt)-th power of
  58 the Teichmuller character is %s ' % L

Attached Files

To refer to attachments on a page, use attachment:filename, as shown below in the list of files. Do NOT use the URL of the [get] link, since this is subject to change and can break easily.
  • [get | view] (2010-07-02 04:07:31, 1.7 KB) [[attachment:Teich-twist.sage]]
  • [get | view] (2010-07-01 03:45:20, 1.2 KB) [[attachment:abelian_field_dirichlet_group.sage]]
  • [get | view] (2010-06-29 16:42:10, 1.1 KB) [[attachment:approximation_of_integral.sage]]
  • [get | view] (2010-07-01 03:48:17, 3.6 KB) [[attachment:computing_modular_symbols_via_complex_integration.sage]]
  • [get | view] (2010-06-29 06:10:26, 1.3 KB) [[attachment:find_gamma.sage]]
  • [get | view] (2010-07-01 05:45:56, 3.3 KB) [[attachment:iwasawa_invariants.sage]]
  • [get | view] (2010-06-30 05:36:30, 1.5 KB) [[attachment:lp_teichmuller.sage]]
  • [get | view] (2010-06-29 00:30:16, 21.9 KB) [[attachment:lseries.m]]
  • [get | view] (2010-06-29 22:37:11, 573.6 KB) [[attachment:modular_symbols_and_padic_lfunctions.pdf]]
  • [get | view] (2010-06-29 00:29:47, 33.9 KB) [[attachment:pLseries.m]]
  • [get | view] (2010-06-29 22:35:43, 265.9 KB) [[attachment:padic_bsd.pdf]]
  • [get | view] (2010-07-02 04:06:18, 3.4 KB) [[attachment:prime5.txt]]
  • [get | view] (2010-07-02 04:06:47, 3.5 KB) [[attachment:prime7.txt]]
  • [get | view] (2010-07-01 07:10:40, 64.1 KB) [[attachment:sha_data_3_11a1_10000.txt]]
  • [get | view] (2010-07-01 07:10:58, 8.5 KB) [[attachment:sha_data_3_11a3_1000.txt]]
  • [get | view] (2010-07-01 07:11:20, 63.9 KB) [[attachment:sha_data_3_42a1_10000.txt]]
  • [get | view] (2010-06-29 00:29:16, 5.3 KB) [[attachment:sha_fast.sage]]
  • [get | view] (2010-07-01 07:18:18, 8.1 KB) [[attachment:sha_v2.sage]]
  • [get | view] (2010-07-01 22:23:54, 1.8 KB) [[attachment:teich_twist.sage]]
  • [get | view] (2010-06-29 04:02:51, 0.7 KB) [[attachment:test.sage]]
 All files | Selected Files: delete move to page copy to page

You are not allowed to attach a file to this page.