Size: 6225
Comment:
|
← Revision 31 as of 2010-07-02 19:46:45 ⇥
Size: 6548
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 118: | Line 118: |
=== Presentation === * Introduction (Daniel) * 2-descent (Ian): http://sagenb.org/home/pub/2227 * 389a (Justin): http://standalone.sagenb.org/home/pub/16/ * 5077a (Rebecca): http://demo.sagenb.org/home/pub/32/ * trace of Heegner (Jen): http://demo.sagenb.org/home/pub/33/ * n-divisible points (Daniel): demo |
Jared Weinstein (UCLA) and William Stein (Univ. of Washington): Heegner Points and Kolyvagin's Euler system
Description
The celebrated Gross-Zagier theorem implies that if
Our group will be concerned with the computation of the classes
Project 1
Let
(a) Assume that
(b) If
(c) Compare the
UPDATE: (a)-(b) has been done for the elliptic curve 389a, for discriminants up to and excluding -67, and for
Project 2
Suppose the Heegner point
Noam's algorithm for computing the trace: /noamtrace
Sage code for Noam's algorithm: http://www.sagenb.org/home/pub/2179/
Project 3
The Mordell-Weil group mod
Go along the lines of the paper of Shaefer and Stoll: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.1056
When
Sage code (a start) for
p=3 : http://standalone.sagenb.org/home/pub/10/
* Sage code (more than a start) for
A Sage function that decides whether an element of A is unramified or transverse: http://sagenb.org/home/pub/2213
Project 4
Let
a) Use 3-descent on E to find two elements in A^\times/(A^\times)^3 representing a basis of III(E/\mathbf{Q}). Here A/\mathbf{Q} is the etale algebra arising in the 3-descent computation.
b) Find primes \ell for which \dim\mathcal{H}(\ell)=1. Use Stein's algorithm to confirm (if possible) that \tau_\ell\neq 0. Repeat until you have found two linearly independent \tau_{\ell_1}, \tau_{\ell_2}: These should span III(E/\mathbf{Q}).
Misc
Finding the n-th roots of a point P on an elliptic curve even when they are not defined over the ground field -- this should be used in Project 3. This should probably be implemented in Sage as an option in P.division_points(n, options).
* Sage code: http://standalone.sagenb.org/home/pub/12/
References
B. H. Gross, Kolyvagin’s work on modular elliptic curves, L-functions and arithmetic (Durham, 1989), London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 235–256.
B. Howard, The Heegner point Kolyvagin system, Compos. Math. 140 (2004), no. 6, 1439–1472.
V. A. Kolyvagin, Euler systems, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhauser Boston, Boston, MA, 1990, pp. 435–483.
W. Stein, Heegner Points on Rank Two Elliptic Curves. http://wstein.org/papers/kolyconj2/.
W. Stein, Toward a generalization of Gross-Zagier. http://wstein.org/papers/stein-ggz/
Projects
- People: Jen Balakrishnan, Justin Walker, Robert Miller, Rebecca Bellovin, Daniel Disegni, Ian Whitehead, Donggeon Yhee, Khoa, Robert Bradshaw, Dario, Chen
Compute Kolyvagin classes mod p
Subproject: fix trac #9302: http://trac.sagemath.org/sage_trac/ticket/9302
Presentation
- Introduction (Daniel)
2-descent (Ian): http://sagenb.org/home/pub/2227
389a (Justin): http://standalone.sagenb.org/home/pub/16/
5077a (Rebecca): http://demo.sagenb.org/home/pub/32/
trace of Heegner (Jen): http://demo.sagenb.org/home/pub/33/
- n-divisible points (Daniel): demo