Size: 4408
Comment:
|
Size: 4498
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 53: | Line 53: |
Line 57: | Line 58: |
* Sage code towards this program for |
Jared Weinstein (UCLA) and William Stein (Univ. of Washington): Heegner Points and Kolyvagin's Euler system
Description
The celebrated Gross-Zagier theorem implies that if
Our group will be concerned with the computation of the classes
Project 1
Let
(a) Assume that
(b) If
(c) Compare the
UPDATE: (a)-(b) has been done for the elliptic curve 389a, for discriminants up to and excluding -67, and for
Project 2
Suppose the Heegner point
Noam's algorithm for computing the trace: /noamtrace
Sage code for Noam's algorithm: http://www.sagenb.org/home/pub/2179/
Project 3
The Mordell-Weil group mod
Sage code towards this program for p=3: http://standalone.sagenb.org/home/pub/11/
Misc
Finding 1/2 * P: http://nt.sagenb.org/home/pub/9/
References
B. H. Gross, Kolyvagin’s work on modular elliptic curves, L-functions and arithmetic (Durham, 1989), London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 235–256.
B. Howard, The Heegner point Kolyvagin system, Compos. Math. 140 (2004), no. 6, 1439–1472.
V. A. Kolyvagin, Euler systems, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhauser Boston, Boston, MA, 1990, pp. 435–483.
W. Stein, Heegner Points on Rank Two Elliptic Curves. http://wstein.org/papers/kolyconj2/.
W. Stein, Toward a generalization of Gross-Zagier. http://wstein.org/papers/stein-ggz/
Projects
- People: Jen Balakrishnan, Justin Walker, Robert Miller, Rebecca Bellovin, Daniel Disegni, Ian Whitehead, Donggeon Yhee, Khoa, Robert Bradshaw, Dario, Chen
Compute Kolyvagin classes mod p
Subproject: fix trac #9302: http://trac.sagemath.org/sage_trac/ticket/9302