Size: 2682
Comment:
|
Size: 3666
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 21: | Line 21: |
== Project 1 == Let be an imaginary quadratic field satisfying the Heegner hypothesis. Finally, let Kolyvagin prime relative to the data (a) Assume that (b) If (c) Compare the |
Jared Weinstein (UCLA) and William Stein (Univ. of Washington): Heegner Points and Kolyvagin's Euler system
Description
The celebrated Gross-Zagier theorem implies that if
Project 1
Let
(a) Assume that
(b) If
(c) Compare the
Our group will be concerned with the computation of the classes
References
B. H. Gross, Kolyvagin’s work on modular elliptic curves, L-functions and arithmetic (Durham, 1989), London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 235–256.
B. Howard, The Heegner point Kolyvagin system, Compos. Math. 140 (2004), no. 6, 1439–1472.
V. A. Kolyvagin, Euler systems, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhauser Boston, Boston, MA, 1990, pp. 435–483.
W. Stein, Heegner Points on Rank Two Elliptic Curves. http://wstein.org/papers/kolyconj2/.
W. Stein, Toward a generalization of Gross-Zagier. http://wstein.org/papers/stein-ggz/
Projects
- People: Jen Balakrishnan, Justin Walker, Robert Miller, Rebecca Bellovin, Daniel Disegni, Ian Whitehead, Donggeon Yhee, Khoa, Robert Bradshaw, Dario, Chen
Compute Kolyvagin classes mod p
Subproject: fix trac #9302: http://trac.sagemath.org/sage_trac/ticket/9302
Using A to compute Kolyvagin classes en masse (theoretical)
Misc.
Finding 1/2 * P: http://nt.sagenb.org/home/pub/9/
Noam's algorithm for computing the trace: /noamtrace