Tim Dokchitser (Cambridge University): Complex L-functions and the Birch and Swinnerton-Dyer conjecture

Structure of the course

Prerequisites

Some familiarity with basic algebraic number theory (number fields, primes), and having seen elliptic curves

Background reading

J. H. Silverman, "The arithmetic of elliptic curves", Chapters 3, 7 and 8.

Sage Reference Manual on elliptic curves: http://sagemath.org/doc/reference/plane_curves.html, up to `Isogenies'.

Computational projects

There will be many small problems and larger assignments to play with, illustrating all the concepts and conjectures from the course.

A. Root Numbers over K for elliptic curves (implement)

B. #III(E/K)_{an} function (L-functions, connection to Wuthrich)

C. Parity Predictions

Computing root numbers project: notes

References: 1. Silverman I Chapter VII (does not mention root numbers but gives background information to compute them) - reduction types of elliptic curves etc; plus Section of Silverman I Appendix C on Tate's algorithm.

Elliptic Curves over Q

root number w = \prod_p w_p * w_\infty

p is a prime of good reduction iff p does not divide the discriminant. If E has good reduction at p then w_p = +1.

p \mid \mid N means p is a prime of multiplicative reduction If E has split multiplicative reduction then w_p = -1 If E has non-split multiplicative reduction then w_p = +1

Step 1: implement w for E/Q with N square-free (already done in GP)

If p^2\mid N then p is a prime of additive reduction for E and w_p is more complicated. There are formulae to compute them, they rely on Tate's algorithm.

Elliptic Curves over general number fields

Root number classification

w = \prod_p w_p \prod_{v\div \infty} (-1)

Additive reduction w_p for p not dividing 2,3 has been done by Rohrlich (somewhat hard to read) see Theorems 2 and 3 which are self-contained

for p \mid 3 this has been done Kobayashi

for p \mid 2 T & V Dokchitser the formulae are really hard - ignore this (!!)

Would perhaps be better to do for any p, or even determine w globally (T & V Dokshitser: page 1) There is a decision to be made as to which methods to use.