Differences between revisions 3 and 4
Revision 3 as of 2009-09-08 21:16:19
Size: 1201
Editor: was
Comment:
Revision 4 as of 2009-09-08 21:16:49
Size: 1200
Editor: was
Comment:
Deletions are marked like this. Additions are marked like this.
Line 31: Line 31:
== Cuspidal Subgroup ==  == Cuspidal Subgroup ==

Specific Tables

Component Groups of J0(N)(R) and J1(N)(R)

This function computes the J_0(N) real component groups.

def f(N):
    M = ModularSymbols(N).cuspidal_subspace()
    d = M.dimension()//2
    S = matrix(GF(2),2*d,2*d, M.star_involution().matrix().list()) - 1
    return 2^(S.nullity()-d)

For J_1(N) it is:

def f(N):
    M = ModularSymbols(Gamma1(N)).cuspidal_subspace()
    d = M.dimension()//2
    S = matrix(GF(2),2*d,2*d, M.star_involution().matrix().list()) - 1
    return 2^(S.nullity()-d)

Future extension: one could replace Gamma1(N) by GammaH(N,...). One could also do the new subspace.

Cuspidal Subgroup

Computing the structure of the cuspidal subgroup of J0(N) and J1(N) (say).

def cuspidal_subgroup_J0(N):
    J = J0(N)
    I = C.cuspidal_subgroup().invariants()
    # maybe pickle J
    return I

def cuspidal_subgroup_J0(N):
    J = J1(N)
    I = C.cuspidal_subgroup().invariants()
    # maybe pickle J
    return I

days17/projects/presagedays/discussion (last edited 2010-07-12 07:39:51 by was)