|
⇤ ← Revision 1 as of 2009-07-26 19:58:23
Size: 2566
Comment:
|
Size: 2581
Comment:
|
| Deletions are marked like this. | Additions are marked like this. |
| Line 11: | Line 11: |
| sage: F = QQ['q,t']; (q,t) = F.gens(); F.rename('QQ(q,t)') | sage: F = FractionField(QQ['q,t']); (q,t) = F.gens(); F.rename('QQ(q,t)') |
Specifications for the abstract ring of multivariate polynomials, with several bases
Ticket 6629
First micro draft
== Setup the framework for MultivariatePolynomials with several bases
Let us work over `F=\QQ(q,t)` (will be needed for Macdonald polynomials)::
sage: F = FractionField(QQ['q,t']); (q,t) = F.gens(); F.rename('QQ(q,t)')
We construct an (abstract) ring of multivariate polynomials over F::
sage: P = AbstractPolynomialRing(F, 'x0,x1,x2'); P
The abstract ring of multivariate polynomials in x0, x1, x2 over QQ(q,t)
See
[[http://mupad-combinat.svn.sourceforge.net/viewvc/mupad-combinat/trunk/MuPAD-Combinat/lib/EXAMPLES/MultivariatePolynomials.mu?view=markup|examples::MultivariatePolynomials]] ([[http://mupad-combinat.svn.sourceforge.net/viewvc/mupad-combinat/trunk/MuPAD-Combinat/lib/EXAMPLES/TEST/MultivariatePolynomials.tst?view=markup|Tests]]
for a preliminary implementation in MuPAD-Combinat
This ring has several bases, starting with the usual monomial basis::
sage: m = P.m
Multivariate Polynomial Ring in x0, x1, x2 over QQ(q,t)
sage: x0,x1,x2 = m.gens()
sage: m.term([3,1,2]) + x2^3 + 3
x0^3*x1*x2^2 + x2^3 + 3
sage:: m is MultivariatePolynomialRing(F, 'x0,x1,x2')
True
The SchurSchubert bases (see MuPAD)::
sage:: P.SchurSchubert()
This is the free module over Schur polynomials with basis Schubert
polynomials; the later are indexed by (the code of) permutations
of `S_n`.
sage:: P.coeffRing()
Symmetric polynomials in the Schur basis over QQ(q,t)
sage:: P.basis().keys()
Permutations of S_n ? or Codes ?
sage:: P.basis().cardinality()
6
Other bases in MuPAD-Combinat:
* NonSymmetricHL, NonSymmetricHLdual
* UniversalDecompositionAlgebra (free module over symmetric
functions in the e basis, with monomial below the stair as basis
* FreeModule over symmetric functions in the e basis over t, with
descent monomials as basis.
Non symmetric Macdonald polynomials (should recycle the current sage.combinat.sf.ns_macdonald)
sage: Macdo = P.MacdonaldPolynomials(q, t)
sage: E = Macdo.E(pi = [3,1,2]); E
Multivariate Polynomial Ring in x0, x1, x2 over QQ(q,t), in the Macdonald E basis, with basement [3,1,2]
sage: E[1,0,0]
E[1,0,0]
sage: m(E[1,0,0])
x0}}}
