Size: 1157
Comment:
|
Size: 873
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 2: | Line 2: |
== Q' Basis: == Timing data for arithmetic with Hall-Littlewood polynomials in the Q' basis. Over ZZ: |
|
Line 6: | Line 3: |
== P basis == | |
Line 7: | Line 5: |
sage: Qp = HallLittlewood_qp(ZZ) sage: time c = Qp([2,2])^2 CPU times: user 0.54 s, sys: 0.01 s, total: 0.55 s Wall time: 0.55 sage: time c = Qp([3,2,1])^2 CPU times: user 11.52 s, sys: 0.24 s, total: 11.76 s Wall time: 11.78 sage: time c = Qp([2,2])^2 CPU times: user 0.21 s, sys: 0.01 s, total: 0.22 s Wall time: 0.22 sage: time c = Qp([3,2,1])^2 CPU times: user 1.16 s, sys: 0.02 s, total: 1.18 s Wall time: 1.18 |
sage: HallLittlewoodP(QQ) Hall-Littlewood polynomials in the P basis over Fraction Field of Univariate Polynomial Ring in t over Rational Field sage: HallLittlewoodP(QQ, t=-1) Hall-Littlewood polynomials in the P basis with t=-1 over Rational Field sage: HLP = HallLittlewoodP(QQ) sage: s = SFASchur(HLP.base_ring()) sage: s(HLP([2,1])) (-t^2-t)*s[1, 1, 1] + s[2, 1] |
Line 21: | Line 14: |
Over QQ: | |
Line 23: | Line 15: |
The Hall-Littlewood polynomials in the P basis at |
|
Line 24: | Line 17: |
sage: Qp = HallLittlewood_qp(QQ) sage: time c = Qp([2,2])^2 CPU times: user 0.77 s, sys: 0.01 s, total: 0.78 s Wall time: 0.78 sage: time c = Qp([3,2,1])^2 CPU times: user 14.00 s, sys: 0.24 s, total: 14.24 s Wall time: 14.26 sage: time c = Qp([2,2])^2 CPU times: user 0.55 s, sys: 0.01 s, total: 0.56 s Wall time: 0.56 sage: time c = Qp([3,2,1])^2 CPU times: user 3.57 s, sys: 0.08 s, total: 3.65 s Wall time: 3.66 |
sage: HLP = HallLittlewoodP(QQ,t=0) sage: s = SFASchur(HLP.base_ring()) sage: s(HLP([2,1])) == s([2,1]) True |
Line 38: | Line 22: |
The majority of time spent in the second one is due to coercion from ZZ['t'] to QQ('t') (which should really be much faster). | The Hall-Littlewood polynomials in the P basis at {{{ sage: HLP = HallLittlewoodP(QQ,t=1) sage: m = SFAMonomial(HLP.base_ring()) sage: m(HLP([2,2,1])) == m([2,2,1]) True }}} |
Hall-Littlewood Polynomials
P basis
sage: HallLittlewoodP(QQ) Hall-Littlewood polynomials in the P basis over Fraction Field of Univariate Polynomial Ring in t over Rational Field sage: HallLittlewoodP(QQ, t=-1) Hall-Littlewood polynomials in the P basis with t=-1 over Rational Field sage: HLP = HallLittlewoodP(QQ) sage: s = SFASchur(HLP.base_ring()) sage: s(HLP([2,1])) (-t^2-t)*s[1, 1, 1] + s[2, 1]
The Hall-Littlewood polynomials in the P basis at
sage: HLP = HallLittlewoodP(QQ,t=0) sage: s = SFASchur(HLP.base_ring()) sage: s(HLP([2,1])) == s([2,1]) True
The Hall-Littlewood polynomials in the P basis at
sage: HLP = HallLittlewoodP(QQ,t=1) sage: m = SFAMonomial(HLP.base_ring()) sage: m(HLP([2,2,1])) == m([2,2,1]) True