Differences between revisions 22 and 32 (spanning 10 versions)
Revision 22 as of 2007-04-23 16:35:09
Size: 3155
Editor: wstein
Comment:
Revision 32 as of 2007-07-22 23:01:26
Size: 3974
Editor: wstein
Comment:
Deletions are marked like this. Additions are marked like this.
Line 3: Line 3:
This is a high-level overview and list of functionality that is easily available from the standard SAGE interface. (The intended reader has never heard of Maxima, GAP, Singular, Givaro, etc.)
This is a high-level overview and list of functionality that is easily available from the standard SAGE interface. (The intended reader has never heard of Maxima, GAP, Singular, Givaro, etc.).
Line 6: Line 7:
 * SAGE has fairly complete symbolic manipulation capabilities, including symbolic and numerical integration, differentiation, limits, etc.   * SAGE has fairly complete symbolic manipulation capabilities, including symbolic and numerical integration, differentiation, limits, etc.

== Combinatorics ==
 * Many basic functions.
 * Many of Sloane's functions are implemented.
Line 19: Line 24:
 * Fast point counting on elliptic curves.
Line 27: Line 33:

== Graph Theory ==
 * Construction, directed graphs, labeled graphs.
 * 2d and 3d plotting of graphs using an optimized implementation of the spring layout algorithm.
 * Constructors for all standard families of graphs
 * Graph isomorphism testing; automorphism group computation
Line 38: Line 50:
== Interfaces == == Interfaces to Math Software ==
Line 52: Line 64:
 * Compute the number of points on an elliptic curve modulo p for all primes p less than a million in seconds.
 * Optimized implementation of the Schoof-Elkies-Atkin point counting algorithm for counting points modulo p when p is large.
 * An optimized modern quadratic Sieve for factoring integers n = p*q.
 * Optimized modern quadratic sieve for factoring integers n = p*q.
 * Optimized implementation of the elliptic curve factorization method.
Line 57: Line 68:
 * Elliptic Curves:
    * All standard invariants of elliptic curves over QQ, division polynomials, etc.
    * Compute the number of points on an elliptic curve modulo p for all primes p less than a million in seconds.
    * Optimized implementation of the Schoof-Elkies-Atkin point counting algorithm for counting points modulo p when p is large.
    * Complex and p-adic L-functions of elliptic curves
    * Can compute p-adic heights and regulators for p < 100000 in a reasonable amount of time.
    * Formal groups
Line 66: Line 84:
 * SAGE provides 2d plotting functionality similar to Mathematica's.  * SAGE provides very complete 2d plotting functionality similar to Mathematica's.

What SAGE Can Do

This is a high-level overview and list of functionality that is easily available from the standard SAGE interface. (The intended reader has never heard of Maxima, GAP, Singular, Givaro, etc.).

Calculus

  • SAGE has fairly complete symbolic manipulation capabilities, including symbolic and numerical integration, differentiation, limits, etc.

Combinatorics

  • Many basic functions.
  • Many of Sloane's functions are implemented.

Coding theory

  • A wide range of basic functionality.

Commutative Algebra

  • Fast computation of Groebner basis.

Cryptography

  • Classical ciphers are well supported.
  • Fast point counting on elliptic curves.

Elementary Education

  • The SAGE notebook (a graphical interface) is a useful tool for basic math education because of its flexible visualization/output capabilities.

Finite Fields

  • Very fast arithmetic over finite fields and extensions of finite fields (especially up to cardinality 2^16).

Graph Theory

  • Construction, directed graphs, labeled graphs.
  • 2d and 3d plotting of graphs using an optimized implementation of the spring layout algorithm.
  • Constructors for all standard families of graphs
  • Graph isomorphism testing; automorphism group computation

Graphical Interface

  • A web-browser based graphical interface, which anybody can easily use or share. The GUI can also be used for any math software that SAGE interfaces with.
  • A wiki with math typesetting preconfigured.

Group Theory

  • Permutations groups
  • Abelian groups
  • Matrix groups (in particular, classical groups over finite fields)

Interfaces to Math Software

  • Interpreter interfaces to Axiom, CoCoA, GAP, KASH, Macaulay2, Magma, Maple, Mathematica, Matlab, Maxima, MuPAD, Octave, and Singular.
  • C/C++-library interfaces to NTL, PARI, Linbox, and mwrank.

Linear Algebra

  • Compute the reduced row echelon form of e.g. dense 20,000x20,000 matrices over GF(2) in seconds and 50MB of RAM.
  • Computation of reduced row echelon forms of sparse matrices.
  • Fast matrix multiplication, characteristic polynomial and echelon forms of dense matrices over QQ.

Number Theory

  • Compute Mordell-Weil groups of (many) elliptic curves using both invariants and algebraic 2-descents.
  • A wide range of number theoretic functions, e.g., euler_phi, primes enumeration, sigma, tau_qexp, etc.
  • Optimized modern quadratic sieve for factoring integers n = p*q.
  • Optimized implementation of the elliptic curve factorization method.
  • Modular symbols for general weight, character, Gamma1, and GammaH.
  • Modular forms for general weight >= 2, character, Gamma1, and GammaH.

  • Elliptic Curves:
    • All standard invariants of elliptic curves over QQ, division polynomials, etc.
    • Compute the number of points on an elliptic curve modulo p for all primes p less than a million in seconds.
    • Optimized implementation of the Schoof-Elkies-Atkin point counting algorithm for counting points modulo p when p is large.
    • Complex and p-adic L-functions of elliptic curves
    • Can compute p-adic heights and regulators for p < 100000 in a reasonable amount of time.

    • Formal groups

Numerical Computation

  • Fast arithmetic and special functions with double precision real and complex numbers.
  • Matrix and vector arithmetic, QR decomposition, system solving.

p-adic Numbers

  • Extensive support for arithmetic with a range of different models of p-adic arithmetic.

Plotting

  • SAGE provides very complete 2d plotting functionality similar to Mathematica's.
  • SAGE provides limited 3d plotting via an included ray tracer.

Polytopes

  • State of the art support for computing with lattice polytopes.
  • Exact convex hulls in any dimension can be quickly computed (requires the optional polymake package).

cando (last edited 2008-11-14 13:42:15 by anonymous)