Differences between revisions 5 and 6
Revision 5 as of 2008-08-12 11:40:01
Size: 1330
Editor: RobertMiller
Comment:
Revision 6 as of 2008-08-12 12:16:36
Size: 4853
Editor: RobertMiller
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
||<-2> Problem Key ||
|| $\rightarrow$ || simplify ||
|| $A(...)$ || assume ... ||
||<-2> Problem Key                    ||
|| $\rightarrow$ || simplify          ||
|| $A(...)$      || assume ...        ||
|| $S(...,x)$ || solve ... for $x$ ||
|| (p.v.) || principal value ||
Line 5: Line 7:
||<-2> Performance Key ||
|| $\times$ || wrong answer/cannot do the problem ||
|| $s\ sec/ms/\mu s$ || performs correctly in time $s$ ||
|| $> s\ sec/ms/\mu s$ || does not finish in time $s$ ||
||<-2> Performance Key                                           ||
|| $\times$                || wrong answer/cannot do the problem ||
|| $s\ sec/ms/\mu s$   || performs correctly in time $s$     ||
|| $> s\ sec/ms/\mu s$   || does not finish in time $s$        ||
Line 11: Line 13:
|| Problem || Maple || Mathematica || GiNaC || Maxima || Sage || Symbolics || Notes (such as code used/version etc.) ||
|| $\sqrt{2\sqrt{3} + 4} \rightarrow 1 + \sqrt{3}$ || || || || || || || ||
|| $2\infty - 3 \rightarrow \infty$ || || || || || || || ||
|| $\frac{e^x-1}{e^{x/2}+1} \rightarrow e^{x/2} - 1$ || || || || || || || ||
|| $A(x \geq y, y \geq z, z \geq x); x = z?$ || || || || || || || ||
|| $A(x > y, y > 0); 2x^2 > 2y^2?$ || || || || || || || ||
|| $\frac{\cos(3x)}{\cos x} \rightarrow \cos^2 x - 3\sin^2 x$ || || || || || || || ||
|| $\frac{\cos(3x)}{\cos x} \rightarrow 2\cos(2x) - 1$ || || || || || || || ||
|| $A(x,y > 0); x^{1/n}y^{1/n} - (xy)^{1/n} \rightarrow 0$ || || || || || || || ||
|| $\log(\tan(\frac{1}{2}x + \frac{\pi}{4})) - \sinh^{-1}(\tan(x)) \rightarrow 0$ || || || || || || || ||
|| $\log\frac{2\sqrt{r} + 1}{\sqrt{4r + 4\sqrt{r} + 1}} \rightarrow 0$ || || || || || || || ||
|| Problem || Maple || Mathematica || GiNaC || Maxima || Sage || Symbolics || Notes (such as code used/version etc.) ||
|| $\sqrt{2\sqrt{3} + 4} \rightarrow 1 + \sqrt{3}$ || || || || || || || ||
|| $2\infty - 3 \rightarrow \infty$ || || || || || || || ||
|| $\frac{e^x-1}{e^{x/2}+1} \rightarrow e^{x/2} - 1$ || || || || || || || ||
|| $A(x \geq y, y \geq z, z \geq x); x = z?$ || || || || || || || ||
|| $A(x > y, y > 0); 2x^2 > 2y^2?$ || || || || || || || ||
|| $\frac{\cos(3x)}{\cos x} \rightarrow \cos^2 x - 3\sin^2 x$ || || || || || || || ||
|| $\frac{\cos(3x)}{\cos x} \rightarrow 2\cos(2x) - 1$ || || || || || || || ||
|| $A(x,y > 0); x^{1/n}y^{1/n} - (xy)^{1/n} \rightarrow 0$ || || || || || || || ||
|| $\log(\tan(\frac{1}{2}x + \frac{\pi}{4})) - \sinh^{-1}(\tan(x)) \rightarrow 0$ || || || || || || || ||
|| $\log\frac{2\sqrt{r} + 1}{\sqrt{4r + 4\sqrt{r} + 1}} \rightarrow 0$ || || || || || || || ||
|| $\frac{\sqrt{xy|z|^2}}{\sqrt{x}|z|} \rightarrow \frac{\sqrt{xy}}{\sqrt{x}} \not\rightarrow \sqrt{y}$ || || || || || || || Note $\sqrt{x} = \pm\sqrt{x}$ ||
|| $\frac{x=0}{2}+1 \rightarrow \frac{x}{2}+1=1$ || || || || || || || ||
|| $S(e^{2x} + 2e^x + 1 = z,x)$ || || || || || || || ||
|| $S((x+1)(\sin^2x + 1)^2\cos^3(3x)=0,x)$ || || || || || || || ||
|| $M^{-1}$, where $M = [[x,1],[y,e^z]]$ || || || || || || || ||
|| $\sum_{k=1}^n k^3 \rightarrow \frac{n^2(n+1)^2}{4}$ || || || || || || || ||
|| $\sum_{k=1}^\infty(\frac{1}{k^2} + \frac{1}{k^3}) \rightarrow \frac{\pi^2}{6} + \zeta(3)$ || || || || || || || ||
|| $\prod_{k=1}^nk \rightarrow n!$ || || || || || || || ||
|| $\lim_{n\rightarrow\infty}(1 + \frac{1}{n})^n \rightarrow e$ || || || || || || || ||
|| $\lim_{x\rightarrow 0}\frac{\sin x}{x} \rightarrow 1$ || || || || || || || ||
|| $\lim_{x\rightarrow 0}\frac{1-\cos x}{x^2} \rightarrow \frac{1}{2}$ || || || || || || || ||
|| $\frac{d^2}{dx^2}y(x(t)) \rightarrow \frac{d^2y}{dx^2}(\frac{dx}{dt})^2 + \frac{dy}{dx}\frac{d^2x}{dt^2}$ || || || || || || || ||
|| $\frac{d}{dx}(\int\frac{1}{x^3+2}dx) \rightarrow \frac{1}{x^3+2}$ || || || || || || || ||
|| $\int\frac{1}{a+b\cos x}dx (a < b)$ || || || || || || || ||
|| $\frac{d}{dx}\int\frac{1}{a+b\cos x}dx = \frac{1}{a+b\cos x}$|| || || || || || || ||
|| $\frac{d}{dx}|x| \rightarrow \frac{x}{|x|}$ || || || || || || || ||
|| $\int|x|dx \rightarrow \frac{x|x|}{2}$ || || || || || || || ||
|| $\int\frac{x}{\sqrt{1+x}+\sqrt{1-x}}dx \rightarrow \frac{(1+x)^{3/2}+(1-x)^{3/2}}{3}$ || || || || || || || ||
|| $\int\frac{\sqrt{1+x}+\sqrt{1-x}}{2}dx \rightarrow \frac{(1+x)^{3/2}+(1-x)^{3/2}}{3}$ || || || || || || || ||
|| $\int_{-1}^1\frac{1}{x}dx \rightarrow 0$(p.v.) || || || || || || || ||




Problem Key

\rightarrow

simplify

A(...)

assume ...

S(...,x)

solve ... for x

(p.v.)

principal value

Performance Key

\times

wrong answer/cannot do the problem

s\ sec/ms/\mu s

performs correctly in time s

> s\ sec/ms/\mu s

does not finish in time s

>.<,s or >.<,\times

very difficult to convince system to do what you want (regardless of performance)

Problem

Maple

Mathematica

GiNaC

Maxima

Sage

Symbolics

Notes (such as code used/version etc.)

\sqrt{2\sqrt{3} + 4} \rightarrow 1 + \sqrt{3}

2\infty - 3 \rightarrow \infty

\frac{e^x-1}{e^{x/2}+1} \rightarrow e^{x/2} - 1

A(x \geq y, y \geq z, z \geq x); x = z?

A(x > y, y > 0); 2x^2 > 2y^2?

\frac{\cos(3x)}{\cos x} \rightarrow \cos^2 x - 3\sin^2 x

\frac{\cos(3x)}{\cos x} \rightarrow 2\cos(2x) - 1

A(x,y > 0); x^{1/n}y^{1/n} - (xy)^{1/n} \rightarrow 0

\log(\tan(\frac{1}{2}x + \frac{\pi}{4})) - \sinh^{-1}(\tan(x)) \rightarrow 0

\log\frac{2\sqrt{r} + 1}{\sqrt{4r + 4\sqrt{r} + 1}} \rightarrow 0

\frac{\sqrt{xy|z|^2}}{\sqrt{x}|z|} \rightarrow \frac{\sqrt{xy}}{\sqrt{x}} \not\rightarrow \sqrt{y}

Note \sqrt{x} = \pm\sqrt{x}

\frac{x=0}{2}+1 \rightarrow \frac{x}{2}+1=1

S(e^{2x} + 2e^x + 1 = z,x)

S((x+1)(\sin^2x + 1)^2\cos^3(3x)=0,x)

M^{-1}, where M = [[x,1],[y,e^z]]

\sum_{k=1}^n k^3 \rightarrow \frac{n^2(n+1)^2}{4}

\sum_{k=1}^\infty(\frac{1}{k^2} + \frac{1}{k^3}) \rightarrow \frac{\pi^2}{6} + \zeta(3)

\prod_{k=1}^nk \rightarrow n!

\lim_{n\rightarrow\infty}(1 + \frac{1}{n})^n \rightarrow e

\lim_{x\rightarrow 0}\frac{\sin x}{x} \rightarrow 1

\lim_{x\rightarrow 0}\frac{1-\cos x}{x^2} \rightarrow \frac{1}{2}

\frac{d^2}{dx^2}y(x(t)) \rightarrow \frac{d^2y}{dx^2}(\frac{dx}{dt})^2 + \frac{dy}{dx}\frac{d^2x}{dt^2}

\frac{d}{dx}(\int\frac{1}{x^3+2}dx) \rightarrow \frac{1}{x^3+2}

\int\frac{1}{a+b\cos x}dx (a < b)

\frac{d}{dx}\int\frac{1}{a+b\cos x}dx = \frac{1}{a+b\cos x}

\frac{d}{dx}|x| \rightarrow \frac{x}{|x|}

\int|x|dx \rightarrow \frac{x|x|}{2}

\int\frac{x}{\sqrt{1+x}+\sqrt{1-x}}dx \rightarrow \frac{(1+x)^{3/2}+(1-x)^{3/2}}{3}

\int\frac{\sqrt{1+x}+\sqrt{1-x}}{2}dx \rightarrow \frac{(1+x)^{3/2}+(1-x)^{3/2}}{3}

\int_{-1}^1\frac{1}{x}dx \rightarrow 0(p.v.)

WesterBenchmarks (last edited 2017-09-01 06:55:22 by chapoton)