Differences between revisions 27 and 45 (spanning 18 versions)
Revision 27 as of 2011-12-17 14:31:11
Size: 6005
Editor: anovocin
Comment:
Revision 45 as of 2011-12-18 16:46:50
Size: 7323
Editor: cremona
Comment:
Deletions are marked like this. Additions are marked like this.
Line 35: Line 35:
 * Sage has a rather old version of eclib in it. It should be easy to upgrade the spkg.  * Sage has a rather old version of eclib in it. It should be easy to upgrade the spkg.  DONE: http://trac.sagemath.org/sage_trac/ticket/10993 is ready for review.
Line 39: Line 39:
 * People: Martin L., Simon K., Flint developers  * People: Martin L., Simon K., Burcin E., Flint developers
Line 43: Line 43:
 * People: Martin A., if it is still going to happen  * People: Martin A.
Line 94: Line 94:
Gives a ratio of about 4.5. Gives a ratio of about 4.5. But then, some of it is due to load/store times, so it might still make sense to try.
Line 98: Line 98:
 * People: Martin A., Simon K., Johan B.  * People: Martin A., Simon K., Johan B., Burcin E.
Line 100: Line 100:
Linear algebra over GF(p^k^) can be reduced to linear algebra over GF(p) and for GF(2^k^) the performance is very nice. Hence, it would be a good project to develop some somewhat generic infrastructure for dense matrices over GF(p^k), or even *any* extension field? The natural place to put this would be LinBox but perhaps we can start stand-alone and then integrate it with LinBox if LinBox is too scary to start with. Linear algebra over GF(p^k^) can be reduced to linear algebra over GF(p) and for GF(2^k^) the performance is very nice. Hence, it would be a good project to develop some somewhat generic infrastructure for dense matrices over GF(p^k), or even *any* extension field? The natural place to put this would be LinBox but perhaps we can start stand-alone and then integrate it with LinBox if LinBox is too scary to start with. Some references (concerning prime slicing) are given at trac ticket [[http://trac.sagemath.org/sage_trac/ticket/12177|#12177]]
Line 104: Line 104:
 * People: mysterious people who added this project, Andy N.  * People: Martin A., Andy N.
Line 120: Line 120:
 * People: David L., John C., Frithjof, Johan B., Maarten D., Martin R., Simon K., Marco S.  * People: David L., John C., Jan V., Frithjof, Johan B., Maarten D., Martin R., Simon K., Marco S.
Line 122: Line 122:
 * fix that one patch that had a problem     * (#5048: Johan B. has done this one.)
    * (#11601: depends on #5048; now rebased; Johan working on this. Done.)
    * #10546: depends on #11601; Jan V to take a look
    * #12043: DL to work on this
    * #10658: Martin R and Frithjof will have a look at this
    * #12124: Martin R and Frithjof will have a look at this
Line 130: Line 136:
 * People: Francis C., Monique v B., Florian B., Sam S., Michiel K, Bogdan B., Colton, Jan, Marco S.  * People: Francis C., Monique v B., Florian B., Sam S., Michiel K, Bogdan B., Colton, Jan, Marco S., Paul Z.
Line 132: Line 138:
      #4283     * http://trac.sagemath.org/sage_trac/ticket/4283
    * http://trac.sagemath.org/sage_trac/ticket/12176
    * http://trac.sagemath.org/sage_trac/ticket/11521 (memleak with elliptic curves)
    * http://trac.sagemath.org/sage_trac/ticket/11838 (added non-regression test, needs review)
Line 137: Line 146:
 * Revive work of March Sage Days  * Revive work of March Sage Days: see http://trac.sagemath.org/sage_trac/ticket/11005
Line 142: Line 151:
 * Sage has a fast implementation of l-isogenies for l=2,3,5,7,13 (for which X_0(l) has genus zero). Kimi has a similarly fast algorithm for those l for which X_0(l) is hyperelliptic (l up to 71), implemented in Sage, which need to be made into a patch for Sage.
Line 157: Line 167:
 * People: Frithjof S, John C., Marco S.  * People: Frithjof S, John C., Marco S., Julian R.

There is a Magma implementation based on John's number field implementation [[http://www.maths.nottingham.ac.uk/personal/cw/algorithms.html|here]].

Projects

Please feel free to add more

Put flint2 into Sage

Switch some of the /eclib/mwrank code to use flint2, and upgrade the eclib spkg in Sage

Help the Singular developers make better use of flint2

  • People: Martin L., Simon K., Burcin E., Flint developers

Linear algebra mod p, for log_2 p = 64

  • People: Martin A.

Flint2 has an implementation for asymptotically fast linear algebra mod p for p up to 2^64. I (malb) am curious whether it can be improved using ideas inspired by M4RIE, i.e., replace multiplications by additions using pre-computation tables. Whether this is beneficial will depend on how much slower multiplication is than additions.

Update (2011-12-15 10:57): It seems the difference between scalar multiplication and addition is too small for these tricks to make sense.

#include <flint.h>
#include <nmod_mat.h>
#include <profiler.h>
#include <stdio.h>

#include "cpucycles-20060326/cpucycles.h"

int main(int argc, char *argv[]) {
  nmod_mat_t A,B,C;
  flint_rand_t state;
  unsigned long long cc0 = 0, cc1 = 0;
  unsigned long i,j;

  unsigned long long p = 4294967311ULL;

  flint_randinit(state);

  nmod_mat_init(A, 2000, 2000, p);
  nmod_mat_init(C, 2000, 2000, p);
  nmod_mat_randfull(A, state);

  cc0 = cpucycles();
  nmod_mat_scalar_mul(C, A, 14234);
  cc0 = cpucycles() - cc0;
  printf("scalar multiplication: %llu\n",cc0);

  cc1 = cpucycles();
  for (i = 0; i < A->r; i++) {
    for (j = 0; j < A->c; j++) {
      C->rows[i][j] =  A->rows[i][j] + A->rows[i][j];
    }
  }
  cc1 = cpucycles() - cc1;
  printf("addition: %llu\n",cc1);

  printf("ratio: %lf\n",((double)cc0)/(double)cc1);

  nmod_mat_clear(A);
  nmod_mat_clear(C);
  flint_randclear(state);
  return 0;
}

Gives a ratio of about 4.5. But then, some of it is due to load/store times, so it might still make sense to try.

Linear algebra mod p^n, for log_2 p small-ish

  • People: Martin A., Simon K., Johan B., Burcin E.

Linear algebra over GF(pk) can be reduced to linear algebra over GF(p) and for GF(2k) the performance is very nice. Hence, it would be a good project to develop some somewhat generic infrastructure for dense matrices over GF(p^k), or even *any* extension field? The natural place to put this would be LinBox but perhaps we can start stand-alone and then integrate it with LinBox if LinBox is too scary to start with. Some references (concerning prime slicing) are given at trac ticket #12177

BKZ 2.0

  • People: Martin A., Andy N.

At AsiaCrypt 2011 Chen and Nguyen presented their new BKZ implementation which is much much more efficient than that in NTL. As far as I understand, the main improvements are due to "extreme pruning" as presented in a paper at EuroCrypt 2010 and perhaps careful parameter choice. As far as I understand, they do not plan to make their code available. I don't know how much work it would be, but perhaps it would be a nice idea to patch NTL's BKZ to include extreme pruning and/or to port it to Flint2?

Improve polynomial factoring mod p in flint2

  • People: Fredrik J., Andy N., David H.

The Cantor-Zassenhaus implementation in the flint2 nmod_poly module could be optimized:

  • Make exponentiation faster by precomputing a Newton inverse of the modulus
  • Use sliding window exponentiation
  • Use the von zur Gathen / Shoup algorithm (adapt the fast power series composition code for modular composition)

Modular forms code in Sage

  • People: David L., John C., Jan V., Frithjof, Johan B., Maarten D., Martin R., Simon K., Marco S.
  • review patches
    • (#5048: Johan B. has done this one.)
    • (#11601: depends on #5048; now rebased; Johan working on this. Done.)
    • #10546: depends on #11601; Jan V to take a look
    • #12043: DL to work on this
    • #10658: Martin R and Frithjof will have a look at this
    • #12124: Martin R and Frithjof will have a look at this

Open MP and FLINT

  • People: David H., Fredrik J., Bogdan B., Julian R.,

Miscellaneous Sage Algebra and Number Theory patches

Simon and ComputeL GP scripts

Elliptic curve isogenies

  • People: Kimi T., John C., François Morain., Monique v B., Özge Ç., Marco S.

  • Sage has a fast implementation of l-isogenies for l=2,3,5,7,13 (for which X_0(l) has genus zero). Kimi has a similarly fast algorithm for those l for which X_0(l) is hyperelliptic (l up to 71), implemented in Sage, which need to be made into a patch for Sage.

Mestre's algorithm for constructing hyperelliptic curves from their invariants

  • People: Florian B., people from projects 10 and 12, Marco S.
  • Trac ticket: http://trac.sagemath.org/sage_trac/ticket/6341

  • Florian has code for Mestre's algorithm, make this into a patch
  • Florian has code for the covariant z_0, put that in the same patch
  • Code for covariant z is not written, write that (optional), reference for the invariant: http://www.warwick.ac.uk/~masgaj/papers/redp1.pdf

  • Reduction of points for SL_2 is also needed. It is
    • easy for QQ, put that in the patch as well
    • very interesting for number fields: Hilbert fundamental domain, bad code that works surprisingly well (Marco), improve that (optional)

Tate's Algorithm over function fields

  • People: Frithjof S, John C., Marco S., Julian R.

There is a Magma implementation based on John's number field implementation here.

SageFlintDays/projects (last edited 2012-02-06 10:39:37 by mstreng)