Differences between revisions 1 and 8 (spanning 7 versions)
Revision 1 as of 2009-04-24 06:30:07
Size: 987
Editor: Minh Nguyen
Comment: Lay out general structure of release tour for Sage 3.4.2
Revision 8 as of 2009-05-01 08:42:02
Size: 5842
Editor: Minh Nguyen
Comment: Summarize #5928, #5914
Deletions are marked like this. Additions are marked like this.
Line 11: Line 11:
 * FIXME: summarize #5820

 * FIXME: summarize #5921


 * Coercing factors into a common universe (Alex Ghitza) -- New method {{{base_change(self, U)}}} in the module {{{sage/structure/factorization.py}}} to allow the factorization {{{self}}} with its factors (including the unit part) coerced into the universe {{{U}}}. Here's an example for working with the new method {{{base_change()}}}:
 {{{
sage: F = factor(2006)
sage: F.universe()
Integer Ring
sage: P.<x> = ZZ["x"]
sage: F.base_change(P).universe()
Univariate Polynomial Ring in x over Integer Ring
 }}}

Line 17: Line 33:
 * Enhancements to symbolic logic (Chris Gorecki) -- This adds a number of utilities for working with symbolic logic:
  1. {{{sage/logic/booleval.py}}} -- For evaluating boolean formulas.
  1. {{{sage/logic/boolformula.py}}} -- For boolean evaluation of boolean formulas.
  1. {{{sage/logic/logicparser.py}}} -- For creating and modifying parse trees of well-formed boolean formulas.
  1. {{{sage/logic/logictable.py}}} -- For creating and printing truth tables associated with logical statements.
  1. {{{sage/logic/propcalc.py}}} -- For propositional calculus.
 Here are some examples for working with the new symbolic logic modules:
 {{{
sage: import sage.logic.propcalc as propcalc
sage: f = propcalc.formula("a&((b|c)^a->c)<->b")
sage: g = propcalc.formula("boolean<->algebra")
sage: (f&~g).ifthen(f)
((a&((b|c)^a->c)<->b)&(~(boolean<->algebra)))->(a&((b|c)^a->c)<->b)
sage: f.truthtable()

a b c value
False False False True
False False True True
False True False False
False True True False
True False False True
True False True False
True True False True
True True True True
 }}}


 * New function {{{squarefree_divisors()}}} (Robert Miller) -- The new function {{{squarefree_divisors(x)}}} in the module {{{sage/rings/arith.py}}} allows for iterating over the squarefree divisors (up to units) of the element {{{x}}}. Here, we assume that {{{x}}} is an element of any ring for which the function {{{prime_divisors()}}} works. Below are some examples for working with the new function {{{squarefree_divisors()}}}:
 {{{
sage: list(squarefree_divisors(7))
[1, 7]
sage: list(squarefree_divisors(6))
[1, 2, 3, 6]
sage: list(squarefree_divisors(81))
[1, 3]
 }}}

Line 29: Line 83:
 * Make {{{cartan_type}}} a method rather than an attribute (Dan Bump) -- For the module {{{sage/combinat/root_system/weyl_characters.py}}}, {{{cartan_type}}} is now a method, not an attribute. For example, one can now invoke {{{cartan_type}}} as a method like so:
 {{{
sage: A2 = WeylCharacterRing("A2")
sage: A2([1,0,0]).cartan_type()
['A', 2]
 }}}

Line 32: Line 94:
 * Improved performance in {{{MPolynomialRing_libsingular}}} (Simon King) -- This provides some optimization of the method {{{MPolynomialRing_libsingular.__call__()}}}. In some cases, the efficiency is up to 19%. The following timing statistics are obtained using the machine sage.math:
 {{{
# BEFORE

sage: R = PolynomialRing(QQ,5,"x")
sage: S = PolynomialRing(QQ,6,"x")
sage: T = PolynomialRing(QQ,5,"y")
sage: U = PolynomialRing(GF(2),5,"x")
sage: p = R("x0*x1+2*x4+x3*x1^2")^4
sage: timeit("q = S(p)")
625 loops, best of 3: 321 µs per loop
sage: timeit("q = T(p)")
625 loops, best of 3: 348 µs per loop
sage: timeit("q = U(p)")
625 loops, best of 3: 435 µs per loop


# AFTER

sage: R = PolynomialRing(QQ,5,"x")
sage: S = PolynomialRing(QQ,6,"x")
sage: T = PolynomialRing(QQ,5,"y")
sage: U = PolynomialRing(GF(2),5,"x")
sage: p = R("x0*x1+2*x4+x3*x1^2")^4
sage: timeit("q = S(p)")
625 loops, best of 3: 316 µs per loop
sage: timeit("q = T(p)")
625 loops, best of 3: 281 µs per loop
sage: timeit("q = U(p)")
625 loops, best of 3: 392 µs per loop
 }}}

Line 41: Line 136:
 * FIXME: summarize #5610

Line 47: Line 145:
 * Default edge color is black (Robert Miller) -- If only one edge of a graph is colored red, for example, then the remaining edges should be colored with black by default. Here's an example:
 {{{
sage: G = graphs.CompleteGraph(5)
sage: G.show(edge_colors={'red':[(0,1)]})
 }}}
{{attachment:pentagon-graph.png}}

Line 56: Line 162:
 * FIXME: summarize #5111

Line 59: Line 168:
 * FIXME: summarize #5886

Line 65: Line 177:
 * FIXME: summarize #5876

Line 68: Line 183:
 * FIXME: summarize #5912

 * FIXME: summarize #2740

 * FIXME: summarize #5880

Line 71: Line 193:
 * FIXME: summarize #5130

 * FIXME: summarize #5822

 * FIXME: summarize #5704

 * FIXME: summarize #4193

 * FIXME: summarize #5890

 * FIXME: summarize #5856

Line 77: Line 212:
 * FIXME: summarize #5803

 * FIXME: summarize #5849

 * Move DSage to its own spkg (William Stein) -- The Distributed Sage framework (DSage) contained in {{{sage/dsage}}} is now packaged as a self-contained spkg. DSage allows for distributed computing from within Sage.


== P-adics ==


 * FIXME: summarize #5946

Sage 3.4.2 Release Tour

Sage 3.4.2 was released on FIXME. For the official, comprehensive release note, please refer to sage-3.4.2.txt. A nicely formatted version of this release tour can be found at FIXME. The following points are some of the foci of this release:

Algebra

  • FIXME: summarize #5820
  • FIXME: summarize #5921
  • Coercing factors into a common universe (Alex Ghitza) -- New method base_change(self, U) in the module sage/structure/factorization.py to allow the factorization self with its factors (including the unit part) coerced into the universe U. Here's an example for working with the new method base_change():

    sage: F = factor(2006)
    sage: F.universe() 
    Integer Ring
    sage: P.<x> = ZZ["x"]
    sage: F.base_change(P).universe() 
    Univariate Polynomial Ring in x over Integer Ring

Algebraic Geometry

Basic Arithmetic

  • Enhancements to symbolic logic (Chris Gorecki) -- This adds a number of utilities for working with symbolic logic:
    1. sage/logic/booleval.py -- For evaluating boolean formulas.

    2. sage/logic/boolformula.py -- For boolean evaluation of boolean formulas.

    3. sage/logic/logicparser.py -- For creating and modifying parse trees of well-formed boolean formulas.

    4. sage/logic/logictable.py -- For creating and printing truth tables associated with logical statements.

    5. sage/logic/propcalc.py -- For propositional calculus.

    Here are some examples for working with the new symbolic logic modules:
    sage: import sage.logic.propcalc as propcalc
    sage: f = propcalc.formula("a&((b|c)^a->c)<->b")
    sage: g = propcalc.formula("boolean<->algebra")
    sage: (f&~g).ifthen(f)
    ((a&((b|c)^a->c)<->b)&(~(boolean<->algebra)))->(a&((b|c)^a->c)<->b)
    sage: f.truthtable()
    
    a      b      c      value
    False  False  False  True   
    False  False  True   True   
    False  True   False  False  
    False  True   True   False  
    True   False  False  True   
    True   False  True   False  
    True   True   False  True   
    True   True   True   True
  • New function squarefree_divisors() (Robert Miller) -- The new function squarefree_divisors(x) in the module sage/rings/arith.py allows for iterating over the squarefree divisors (up to units) of the element x. Here, we assume that x is an element of any ring for which the function prime_divisors() works. Below are some examples for working with the new function squarefree_divisors():

    sage: list(squarefree_divisors(7))
    [1, 7]
    sage: list(squarefree_divisors(6))
    [1, 2, 3, 6]
    sage: list(squarefree_divisors(81))
    [1, 3]

Build

Calculus

Coercion

Combinatorics

  • Make cartan_type a method rather than an attribute (Dan Bump) -- For the module sage/combinat/root_system/weyl_characters.py, cartan_type is now a method, not an attribute. For example, one can now invoke cartan_type as a method like so:

    sage: A2 = WeylCharacterRing("A2")
    sage: A2([1,0,0]).cartan_type()
    ['A', 2]

Commutative Algebra

  • Improved performance in MPolynomialRing_libsingular (Simon King) -- This provides some optimization of the method MPolynomialRing_libsingular.__call__(). In some cases, the efficiency is up to 19%. The following timing statistics are obtained using the machine sage.math:

    # BEFORE
    
    sage: R = PolynomialRing(QQ,5,"x")
    sage: S = PolynomialRing(QQ,6,"x")
    sage: T = PolynomialRing(QQ,5,"y")
    sage: U = PolynomialRing(GF(2),5,"x")
    sage: p = R("x0*x1+2*x4+x3*x1^2")^4
    sage: timeit("q = S(p)")
    625 loops, best of 3: 321 µs per loop
    sage: timeit("q = T(p)")
    625 loops, best of 3: 348 µs per loop
    sage: timeit("q = U(p)")
    625 loops, best of 3: 435 µs per loop
    
    
    # AFTER
    
    sage: R = PolynomialRing(QQ,5,"x")
    sage: S = PolynomialRing(QQ,6,"x")
    sage: T = PolynomialRing(QQ,5,"y")
    sage: U = PolynomialRing(GF(2),5,"x")
    sage: p = R("x0*x1+2*x4+x3*x1^2")^4
    sage: timeit("q = S(p)")
    625 loops, best of 3: 316 µs per loop
    sage: timeit("q = T(p)")
    625 loops, best of 3: 281 µs per loop
    sage: timeit("q = U(p)")
    625 loops, best of 3: 392 µs per loop

Distribution

Doctest

Documentation

  • FIXME: summarize #5610

Geometry

Graph Theory

  • Default edge color is black (Robert Miller) -- If only one edge of a graph is colored red, for example, then the remaining edges should be colored with black by default. Here's an example:
    sage: G = graphs.CompleteGraph(5)
    sage: G.show(edge_colors={'red':[(0,1)]})

pentagon-graph.png

Graphics

Group Theory

Interfaces

  • FIXME: summarize #5111

Linear Algebra

  • FIXME: summarize #5886

Miscellaneous

Modular Forms

  • FIXME: summarize #5876

Notebook

  • FIXME: summarize #5912
  • FIXME: summarize #2740
  • FIXME: summarize #5880

Number Theory

  • FIXME: summarize #5130
  • FIXME: summarize #5822
  • FIXME: summarize #5704
  • FIXME: summarize #4193
  • FIXME: summarize #5890
  • FIXME: summarize #5856

Numerical

Packages

  • FIXME: summarize #5803
  • FIXME: summarize #5849
  • Move DSage to its own spkg (William Stein) -- The Distributed Sage framework (DSage) contained in sage/dsage is now packaged as a self-contained spkg. DSage allows for distributed computing from within Sage.

P-adics

  • FIXME: summarize #5946

Quadratic Forms

Symbolics

Topology

User Interface

Website / Wiki

ReleaseTours/sage-3.4.2 (last edited 2009-12-27 10:09:30 by Minh Nguyen)