Differences between revisions 3 and 5 (spanning 2 versions)
Revision 3 as of 2009-03-17 21:36:52
Size: 1264
Comment:
Revision 5 as of 2009-03-18 10:11:38
Size: 1477
Editor: AlexGhitza
Comment:
Deletions are marked like this. Additions are marked like this.
Line 3: Line 3:
 * packages: lrs, cddlib, porta, 4ti2, polymake, coin/or  * packages: lrs, cddlib, porta, 4ti2, polymake, coin/or, [[http://www.lix.polytechnique.fr/Labo/Andreas.Enge/Vinci.html| vinci]]
Line 47: Line 47:

[[Another note from M. Hampton: I have a patch for computing face lattices and f-vectors that I am hoping to put up on trac this week.]]

Polytopes requests

  • packages: lrs, cddlib, porta, 4ti2, polymake, coin/or, vinci

  • optimal performance: important algorithms are reverse search (as in lrs, uses less memory), double description (track the duals, as in cdd and 4ti2)
  • optimization: linear and integer programming (coin/or), semidefinite programming (any good software for this?)
  • combinatorial aspects
  • polymake puts a lot of these things together, but it does not build!

Bernstein's theorem

(this is coming from Daniel Erman).

R.<a,b>=QQ[]
f1=a^2+a*b+b^2+1
f2=a*b^2+a^2*b+11
N1=f1.newton_polytope()
N2=f2.newton_polytope()
S=[N1,N2]

I would like to be able to compute the mixed volume of the collection of polytopes:

S.mixed_volume()

[[Note from Marshall Hampton: this is possible using the optional phc package:

from sage.interfaces.phc import phc
phc.mixed_volume([f1,f2])

]]

The reason I want to do this is because I want to apply Bernstein's theorem to a polynomial system in affine space. So conceivably I'd like to ask:

F=[f1,f2]
F.bernstein_bound()

In addition I'd like to be able to compute anything about N1 that can be done in polymake. For instance f-vector:

N1.f_vector()

Another note from M. Hampton: I have a patch for computing face lattices and f-vectors that I am hoping to put up on trac this week.