1290
Comment:
|
2647
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
I am a graduate student at the University of Southern California. | I was a Program in Computing Assistant Adjunct Professor in the Department of Mathematics at UCLA (2007-2011) and am a SAGEvangelist (2005-). |
Line 3: | Line 3: |
http://www-scf.usc.edu/~burhanud http://sage.math.washington.edu/home/burhanud | - http://www-scf.usc.edu/~burhanud |
Line 5: | Line 5: |
I am working/plan to work on wrt to SAGE are: | - http://www.math.ucla.edu/people/pages/burhanud.shtml - http://sage.math.washington.edu/home/burhanud === [[Papers | http://sage.math.washington.edu/home/burhanud/papers]] === Deciding whether the p-torsion group of the Q_p-rational points of an elliptic curve is non-trivial. ANTS VI Poster Abstracts. SIGSAM Bulletin, Volume 38, Number 3 September 2004 Issue 149. Abstract: This note describes an algorithm to decide whether an elliptic curve over Q_p has a non-trivial p-torsion part (# E(Q_p)[p] is not equal to 1) under certain assumptions. http://sage.math.washington.edu/home/burhanud/papers/burhanuddin.elliptic.curve.p-adic.torsion.pdf === Stuff I have worked/am working/plan to work on wrt to SAGE === * Doctoral dissertation [[http://www.sagemath.org/files/thesis/burhanuddin-thesis-2007.pdf]] * On the reducibility of Hecke polynomials over ZZ [[http://sage.math.washington.edu/home/burhanud/heckered/heckered.pdf]] * Mestre's method of graphs project which started at the [[http://modular.math.washington.edu/msri06|MSRI Computing with Modular Forms]] workshop. Check out: code http://sage.math.washington.edu/home/burhanud/SSMod/ssmod.py.txt slides http://sage.math.washington.edu/home/burhanud/msri_talk.pdf pictures http://sage.math.washington.edu/home/burhanud/msri06 * Implementing asymptotically fast elliptic curve rational torsion computation algorithms. kurrently kludgey kode http://sage.math.washington.edu/home/burhanud/tor/tor.py.txt algorithms http://modular.math.washington.edu/home/burhanud/volume.pdf * My research is pretty SAGEy Research Statement http://sage.math.washington.edu/home/burhanud/app11/restat11/iftikhar.burhanuddin.restat11.pdf === Old Stuff === * [[Talks| Make wikipage about Talks related to SAGE (plan)]] |
Line 10: | Line 56: |
* Editing the SAGE reference manual (and build process?) in time for the release of sage-2.0 (plan) http://sage.math.washington.edu/sage/doc/html/ref/index.html |
|
Line 19: | Line 70: |
* Mestre's method of graphs project which started at the MSRI Computing with Modular Forms workshop. | * [[http://modular.math.washington.edu/sage/apps/|Example Scripts]] |
Line 21: | Line 72: |
Check out: slides from my talk http://sage.math.washington.edu/home/burhanud/msri_talk.pdf and pictures from the conference http://sage.math.washington.edu/home/burhanud/msri06 and code http://sage.math.washington.edu/home/burhanud/SSMod/ssmod.py.txt * Implementing asymptotically fast elliptic curve rational torsion computation algorithms. kurrently kludgey kode http://sage.math.washington.edu/home/burhanud/tor/tor.py.txt algorithms http://modular.math.washington.edu/home/burhanud/volume.pdf * Thesis et al Research Statement http://sage.math.washington.edu/home/burhanud/job_app/restat.pdf |
CategoryHomepage |
I was a Program in Computing Assistant Adjunct Professor in the Department of Mathematics at UCLA (2007-2011) and am a SAGEvangelist (2005-).
[[Papers | http://sage.math.washington.edu/home/burhanud/papers]]
Deciding whether the p-torsion group of the Q_p-rational points of an elliptic curve is non-trivial. ANTS VI Poster Abstracts. SIGSAM Bulletin, Volume 38, Number 3 September 2004 Issue 149.
Abstract: This note describes an algorithm to decide whether an elliptic curve over Q_p has a non-trivial p-torsion part (# E(Q_p)[p] is not equal to 1) under certain assumptions.
http://sage.math.washington.edu/home/burhanud/papers/burhanuddin.elliptic.curve.p-adic.torsion.pdf
Stuff I have worked/am working/plan to work on wrt to SAGE
* Doctoral dissertation http://www.sagemath.org/files/thesis/burhanuddin-thesis-2007.pdf
* On the reducibility of Hecke polynomials over ZZ http://sage.math.washington.edu/home/burhanud/heckered/heckered.pdf
* Mestre's method of graphs project which started at the MSRI Computing with Modular Forms workshop.
- Check out:
* Implementing asymptotically fast elliptic curve rational torsion computation algorithms.
kurrently kludgey kode http://sage.math.washington.edu/home/burhanud/tor/tor.py.txt
algorithms http://modular.math.washington.edu/home/burhanud/volume.pdf
* My research is pretty SAGEy
Research Statement http://sage.math.washington.edu/home/burhanud/app11/restat11/iftikhar.burhanuddin.restat11.pdf
Old Stuff
* Make wikipage about Talks related to SAGE (plan)
* Editing the SAGE programming guide in time for the release of sage-2.0
* Editing the SAGE reference manual (and build process?) in time for the release of sage-2.0 (plan)
* Wrapping Denis Simon's 2-descent (plan)
* Dekinking some SAGE tab completion kinks (plan)
* SAGE + Parallel, The Problem Book (plan)