Differences between revisions 1 and 5 (spanning 4 versions)
Revision 1 as of 2012-02-16 16:27:21
Size: 630
Editor: hivertwiki
Comment:
Revision 5 as of 2012-02-16 20:09:54
Size: 1449
Editor: vdelecroix
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
{{{#!rst
Line 4: Line 6:
The goal of this page is to gather all problems due to equality accepting coercion in borderline cases The goal of this page is to gather all problems due to equality accepting coercion in borderline cases::
Line 6: Line 8:
{{{
sage: bool(pi == 3.14159265358979323)
True
sage: hash(pi)
2943215493
sage: hash(3.14159265358979323)
1826823505
sage: dd
{3.1415926535897932: 'approx', pi: 'exact'}
sage: {0:"exact", 0.0000000000000000000:"approx"}
{0: 'approx'}
}}}
as a consequence
{{{
sage: pii = 3.14159265358979323
sage: bool(pii == pi)
True
sage: dd = {pi: "exact"}
sage: pi in dd
True
sage: pii in dd
False
sage: pii in dd.keys()
True
    sage: bool(pi == 3.14159265358979323)
    True
    sage: hash(pi)
    2943215493
    sage: hash(3.14159265358979323)
    1826823505

But gathered from Python 2.7 documentation::

    object.__hash__(self)
    Called by built-in function hash() and for operations on members of hashed collections including set,
    frozenset, and dict. __hash__() should return an integer. The only required property is that objects
    which compare equal have the same hash value;

As a first consequence of the above behavior::

    sage: {3.1415926535897932: 'approx', pi: 'exact'}
    {3.1415926535897932: 'approx', pi: 'exact'}
    sage: {0:"exact", 0.0000000000000000000:"approx"}
    {0: 'approx'}

And also::

    sage: pii = 3.14159265358979323
    sage: bool(pii == pi)
    True
    sage: dd = {pi: "exact"}
    sage: pi in dd
    True
    sage: pii in dd
    False
    sage: pii in dd.keys()
    True


More strange consequences when using UniqueRepresentation
---------------------------------------------------------

::

    sage: F1 = FiniteEnumeratedSet([0.000000])
    sage: F2 = FiniteEnumeratedSet([0])
    sage: F1 is F2
    True
    sage: F2.list()
    [0.000000000000000]
    sage:

Equality and Coercion could be harmful

The goal of this page is to gather all problems due to equality accepting coercion in borderline cases:

sage: bool(pi == 3.14159265358979323)
True
sage: hash(pi)
2943215493
sage: hash(3.14159265358979323)
1826823505

But gathered from Python 2.7 documentation:

object.__hash__(self)
Called by built-in function hash() and for operations on members of hashed collections including set,
frozenset, and dict. __hash__() should return an integer. The only required property is that objects
which compare equal have the same hash value;

As a first consequence of the above behavior:

sage: {3.1415926535897932: 'approx', pi: 'exact'}
{3.1415926535897932: 'approx', pi: 'exact'}
sage: {0:"exact", 0.0000000000000000000:"approx"}
{0: 'approx'}

And also:

sage: pii = 3.14159265358979323
sage: bool(pii == pi)
True
sage: dd = {pi: "exact"}
sage: pi in dd
True
sage: pii in dd
False
sage: pii in dd.keys()
True

More strange consequences when using UniqueRepresentation

sage: F1 = FiniteEnumeratedSet([0.000000])
sage: F2 = FiniteEnumeratedSet([0])
sage: F1 is F2
True
sage: F2.list()
[0.000000000000000]
sage:

EqualityCoercion (last edited 2017-03-13 22:32:31 by hivertwiki)