Differences between revisions 10 and 13 (spanning 3 versions)
Revision 10 as of 2007-06-24 23:50:21
Size: 1715
Editor: DavidJoyner
Comment:
Revision 13 as of 2008-02-23 15:51:30
Size: 2971
Editor: DavidJoyner
Comment:
Deletions are marked like this. Additions are marked like this.
Line 39: Line 39:
$$
x \ {\mapsto}\ \sin ( \frac{\pi \cdot x}{2} )
$$
$$x \ {\mapsto}\ \sin ( \frac{\pi \cdot x}{2} ) $$
Line 43: Line 41:
$$
\ {\mapsto}\ 1 - ( x - 1 )^2   $$
$$x \ {\mapsto}\ 1 - ( x - 1 )^2 $$
Line 58: Line 54:
However, at the moment only Laplace transforms of "piecewise polynomial" functions are implemented:

{{{
sage: f(x) = x^2+1
sage: g(x) = 1-(x-1)^3
sage: P = Piecewise([[(0,1), f], [(1,3),g], [(3,5), h]])
sage: P.laplace(x,s)
(s^3 - 6)*e^(-s)/s^4 - ((2*s^2 + 2*s + 2)*e^(-s)/s^3) + (7*s^3 + 12*s^2 + 12*s + 6)*e^(-3*s)/s^4 + (-3*s - 1)*e^(-3*s)/s^2 + (5*s + 1)*e^(-5*s)/s^2 + (s^2 + 2)/s^3
}}}
Line 63: Line 69:

You can find the convolution of any piecewise defined function with another (off the domain of definition, they are assumed to be zero). Here is $ f$ , $ f*f$ , and $ f*f*f$ , where $ f(x)=1$ , $ 0<x<1$ :

{{{
sage: x = PolynomialRing(QQ, 'x').gen()
sage: f = Piecewise([[(0,1),1*x^0]])
sage: g = f.convolution(f)
sage: h = f.convolution(g)
sage: P = f.plot(); Q = g.plot(rgbcolor=(1,1,0)); R = h.plot(rgbcolor=(0,1,1))
}}}
The command show(P+Q+R) displays this:

http://sage.math.washington.edu/home/wdj/art/convolutions.png

Though SAGE doesn't simplify very well, you can see that the $LT(f*f)$ is equal to
$LT(f)^2$:

{{{
sage: f.laplace(x,s)
1/s - e^(-s)/s
sage: g.laplace(x,s)
-(s + 1)*e^(-s)/s^2 + (s - 1)*e^(-s)/s^2 + e^(-(2*s))/s^2 + 1/s^2
sage: (f.laplace(x,s)^2).expand()
-2*e^(-s)/s^2 + e^(-(2*s))/s^2 + 1/s^2
}}}

Differential Equations

First order DEs

IVPs, Direction Fields, Isoclines

Direction Fields, Autonomous DEs

Separable DEs, Exact DEs, Linear 1st order DEs

Numerical method: Euler (or Constant Slope)

Applications (Growth/Cooling/Circuits/Falling body)

Higher order DEs

IVPs/General solutions, Basic theory

Numerical methods for higher order DEs

Constant coefficient case: Undetermined Coefficients

Application: springs (free, damped, forced, pure resonance)

Application: Electrical Circuits

Laplace Transform (LT) methods

Inverse Laplace & Derivatives

1st Translation Thrm

Partial Fractions, completing the square

Unit Step Functions

SAGE can define piecewise functions like

x \ {\mapsto}\ \sin ( \frac{\pi \cdot x}{2} )
on (0, 1),
x \ {\mapsto}\ 1 - ( x - 1 )^2
on (1, 3),
x \ {\mapsto}\ -x
on (3, 5), as follows:

sage: f(x) = sin(x*pi/2)
sage: g(x) = 1-(x-1)^2
sage: h(x) = -x
sage: P = Piecewise([[(0,1), f], [(1,3),g], [(3,5), h]])
sage: latex(P)

However, at the moment only Laplace transforms of "piecewise polynomial" functions are implemented:

sage: f(x) = x^2+1      
sage: g(x) = 1-(x-1)^3
sage: P = Piecewise([[(0,1), f], [(1,3),g], [(3,5), h]])
sage: P.laplace(x,s)
(s^3 - 6)*e^(-s)/s^4 - ((2*s^2 + 2*s + 2)*e^(-s)/s^3) + (7*s^3 + 12*s^2 + 12*s + 6)*e^(-3*s)/s^4 + (-3*s - 1)*e^(-3*s)/s^2 + (5*s + 1)*e^(-5*s)/s^2 + (s^2 + 2)/s^3

2nd Translation Theorem

Derivative thrms, Solving DEs

Convolution theorem

You can find the convolution of any piecewise defined function with another (off the domain of definition, they are assumed to be zero). Here is f , f*f , and f*f*f , where f(x)=1 , 0<x<1 :

sage: x = PolynomialRing(QQ, 'x').gen()
sage: f = Piecewise([[(0,1),1*x^0]])
sage: g = f.convolution(f)
sage: h = f.convolution(g)
sage: P = f.plot(); Q = g.plot(rgbcolor=(1,1,0)); R = h.plot(rgbcolor=(0,1,1))

The command show(P+Q+R) displays this:

http://sage.math.washington.edu/home/wdj/art/convolutions.png

Though SAGE doesn't simplify very well, you can see that the LT(f*f) is equal to LT(f)^2:

sage: f.laplace(x,s)
1/s - e^(-s)/s
sage: g.laplace(x,s)
-(s + 1)*e^(-s)/s^2 + (s - 1)*e^(-s)/s^2 + e^(-(2*s))/s^2 + 1/s^2
sage: (f.laplace(x,s)^2).expand()
-2*e^(-s)/s^2 + e^(-(2*s))/s^2 + 1/s^2

Dirac Delta Function

Application: Lanchester's equations

Application: Electrical networks

PDEs

Separation of Variables

Heat Equation., Fourier's solution

Fourier Series

Convergence, Dirichlet's theorem

Fourier Sine Series, Fourier Cosine Series

Heat Eqn. Ends at Zero

Heat Eqn. Both Ends Insulated

Differential_Equations (last edited 2008-11-14 13:42:08 by anonymous)