Differences between revisions 1 and 13 (spanning 12 versions)
Revision 1 as of 2007-06-24 23:27:22
Size: 28
Editor: DavidJoyner
Comment:
Revision 13 as of 2008-02-23 15:51:30
Size: 2971
Editor: DavidJoyner
Comment:
Deletions are marked like this. Additions are marked like this.
Line 2: Line 2:

== First order DEs ==

=== IVPs, Direction Fields, Isoclines ===

=== Direction Fields, Autonomous DEs ===

=== Separable DEs, Exact DEs, Linear 1st order DEs ===

=== Numerical method: Euler (or Constant Slope) ===

=== Applications (Growth/Cooling/Circuits/Falling body) ===

== Higher order DEs ==

=== IVPs/General solutions, Basic theory ===

=== Numerical methods for higher order DEs ===

=== Constant coefficient case: Undetermined Coefficients ===

=== Application: springs (free, damped, forced, pure resonance) ===

=== Application: Electrical Circuits ===

== Laplace Transform (LT) methods ==

=== Inverse Laplace & Derivatives ===

=== 1st Translation Thrm ===

=== Partial Fractions, completing the square ===

=== Unit Step Functions ===

SAGE can define piecewise functions like

$$x \ {\mapsto}\ \sin ( \frac{\pi \cdot x}{2} ) $$
on $(0, 1)$,
$$x \ {\mapsto}\ 1 - ( x - 1 )^2 $$
on $(1, 3)$,
$$x \ {\mapsto}\ -x $$
on $(3, 5)$, as follows:

{{{
sage: f(x) = sin(x*pi/2)
sage: g(x) = 1-(x-1)^2
sage: h(x) = -x
sage: P = Piecewise([[(0,1), f], [(1,3),g], [(3,5), h]])
sage: latex(P)
}}}

However, at the moment only Laplace transforms of "piecewise polynomial" functions are implemented:

{{{
sage: f(x) = x^2+1
sage: g(x) = 1-(x-1)^3
sage: P = Piecewise([[(0,1), f], [(1,3),g], [(3,5), h]])
sage: P.laplace(x,s)
(s^3 - 6)*e^(-s)/s^4 - ((2*s^2 + 2*s + 2)*e^(-s)/s^3) + (7*s^3 + 12*s^2 + 12*s + 6)*e^(-3*s)/s^4 + (-3*s - 1)*e^(-3*s)/s^2 + (5*s + 1)*e^(-5*s)/s^2 + (s^2 + 2)/s^3
}}}

=== 2nd Translation Theorem ===

=== Derivative thrms, Solving DEs ===

=== Convolution theorem ===

You can find the convolution of any piecewise defined function with another (off the domain of definition, they are assumed to be zero). Here is $ f$ , $ f*f$ , and $ f*f*f$ , where $ f(x)=1$ , $ 0<x<1$ :

{{{
sage: x = PolynomialRing(QQ, 'x').gen()
sage: f = Piecewise([[(0,1),1*x^0]])
sage: g = f.convolution(f)
sage: h = f.convolution(g)
sage: P = f.plot(); Q = g.plot(rgbcolor=(1,1,0)); R = h.plot(rgbcolor=(0,1,1))
}}}
The command show(P+Q+R) displays this:

http://sage.math.washington.edu/home/wdj/art/convolutions.png

Though SAGE doesn't simplify very well, you can see that the $LT(f*f)$ is equal to
$LT(f)^2$:

{{{
sage: f.laplace(x,s)
1/s - e^(-s)/s
sage: g.laplace(x,s)
-(s + 1)*e^(-s)/s^2 + (s - 1)*e^(-s)/s^2 + e^(-(2*s))/s^2 + 1/s^2
sage: (f.laplace(x,s)^2).expand()
-2*e^(-s)/s^2 + e^(-(2*s))/s^2 + 1/s^2
}}}

=== Dirac Delta Function ===

=== Application: Lanchester's equations ===

=== Application: Electrical networks ===

== PDEs ==

=== Separation of Variables ===

=== Heat Equation., Fourier's solution ===

=== Fourier Series ===

=== Convergence, Dirichlet's theorem ===

=== Fourier Sine Series, Fourier Cosine Series ===

=== Heat Eqn. Ends at Zero ===

=== Heat Eqn. Both Ends Insulated ===

Differential Equations

First order DEs

IVPs, Direction Fields, Isoclines

Direction Fields, Autonomous DEs

Separable DEs, Exact DEs, Linear 1st order DEs

Numerical method: Euler (or Constant Slope)

Applications (Growth/Cooling/Circuits/Falling body)

Higher order DEs

IVPs/General solutions, Basic theory

Numerical methods for higher order DEs

Constant coefficient case: Undetermined Coefficients

Application: springs (free, damped, forced, pure resonance)

Application: Electrical Circuits

Laplace Transform (LT) methods

Inverse Laplace & Derivatives

1st Translation Thrm

Partial Fractions, completing the square

Unit Step Functions

SAGE can define piecewise functions like

x \ {\mapsto}\ \sin ( \frac{\pi \cdot x}{2} )
on (0, 1),
x \ {\mapsto}\ 1 - ( x - 1 )^2
on (1, 3),
x \ {\mapsto}\ -x
on (3, 5), as follows:

sage: f(x) = sin(x*pi/2)
sage: g(x) = 1-(x-1)^2
sage: h(x) = -x
sage: P = Piecewise([[(0,1), f], [(1,3),g], [(3,5), h]])
sage: latex(P)

However, at the moment only Laplace transforms of "piecewise polynomial" functions are implemented:

sage: f(x) = x^2+1      
sage: g(x) = 1-(x-1)^3
sage: P = Piecewise([[(0,1), f], [(1,3),g], [(3,5), h]])
sage: P.laplace(x,s)
(s^3 - 6)*e^(-s)/s^4 - ((2*s^2 + 2*s + 2)*e^(-s)/s^3) + (7*s^3 + 12*s^2 + 12*s + 6)*e^(-3*s)/s^4 + (-3*s - 1)*e^(-3*s)/s^2 + (5*s + 1)*e^(-5*s)/s^2 + (s^2 + 2)/s^3

2nd Translation Theorem

Derivative thrms, Solving DEs

Convolution theorem

You can find the convolution of any piecewise defined function with another (off the domain of definition, they are assumed to be zero). Here is f , f*f , and f*f*f , where f(x)=1 , 0<x<1 :

sage: x = PolynomialRing(QQ, 'x').gen()
sage: f = Piecewise([[(0,1),1*x^0]])
sage: g = f.convolution(f)
sage: h = f.convolution(g)
sage: P = f.plot(); Q = g.plot(rgbcolor=(1,1,0)); R = h.plot(rgbcolor=(0,1,1))

The command show(P+Q+R) displays this:

http://sage.math.washington.edu/home/wdj/art/convolutions.png

Though SAGE doesn't simplify very well, you can see that the LT(f*f) is equal to LT(f)^2:

sage: f.laplace(x,s)
1/s - e^(-s)/s
sage: g.laplace(x,s)
-(s + 1)*e^(-s)/s^2 + (s - 1)*e^(-s)/s^2 + e^(-(2*s))/s^2 + 1/s^2
sage: (f.laplace(x,s)^2).expand()
-2*e^(-s)/s^2 + e^(-(2*s))/s^2 + 1/s^2

Dirac Delta Function

Application: Lanchester's equations

Application: Electrical networks

PDEs

Separation of Variables

Heat Equation., Fourier's solution

Fourier Series

Convergence, Dirichlet's theorem

Fourier Sine Series, Fourier Cosine Series

Heat Eqn. Ends at Zero

Heat Eqn. Both Ends Insulated

Differential_Equations (last edited 2008-11-14 13:42:08 by anonymous)