2179
Comment:
|
3511
converted to 1.6 markup
|
Deletions are marked like this. | Additions are marked like this. |
Line 3: | Line 3: |
Besides the examples on this page, please see the discussion in ["BasicCalculus"]. | Besides the examples on this page, please see the discussion in [[BasicCalculus]]. |
Line 32: | Line 32: |
}}} Another example: {{{ sage: var('x k w') (x, k, w) sage: f = x^3 * e^(k*x) * sin(w*x); f x^3*e^(k*x)*sin(w*x) sage: f.diff(x) k*x^3*e^(k*x)*sin(w*x) + 3*x^2*e^(k*x)*sin(w*x) + w*x^3*e^(k*x)*cos(w*x) sage: print diff(f, x) 3 k x 2 k x 3 k x k x e sin(w x) + 3 x e sin(w x) + w x e cos(w x) sage: latex(f.diff(x)) {{{k {x}^{3} } {e}^{{k x}} } \sin \left( {w x} \right)} + {{{3 {x}^{2} } {e}^{{k x}} } \sin \left( {w x} \right)} + {{{w {x}^{3} } {e}^{{k x}} } \cos \left( {w x} \right)} |
|
Line 121: | Line 137: |
Taylor series: {{{ sage: var('f0 k x') (f0, k, x) sage: g = f0/sinh(k*x)^4 sage: g.taylor(x, 0, 3) f0/(k^4*x^4) - 2*f0/(3*k^2*x^2) + 11*f0/45 - 62*k^2*f0*x^2/945 sage: maxima(g).powerseries('x',0) 16*f0*('sum((2^(2*i1-1)-1)*bern(2*i1)*k^(2*i1-1)*x^(2*i1-1)/(2*i1)!,i1,0,inf))^4 }}} Of course, you can view the latexed version of this using view(g.powerseries('x',0)). The Maclaurin and power series of $ \log({\frac{\sin(x)}{x}})$ : {{{ sage: f = log(sin(x)/x) sage: f.taylor(x, 0, 10) -x^2/6 - x^4/180 - x^6/2835 - x^8/37800 - x^10/467775 sage: [bernoulli(2*i) for i in range(1,7)] [1/6, -1/30, 1/42, -1/30, 5/66, -691/2730] sage: maxima(f).powerseries(x,0) ('sum((-1)^i2*2^(2*i2)*bern(2*i2)*x^(2*i2)/(i2*(2*i2)!),i2,1,inf))/2 }}} |
Differential Calculus
Besides the examples on this page, please see the discussion in BasicCalculus.
Functions
Piecewise fcns, polynomials, exponential, logs, trig and hyperboic trig functions.
Limits
SAGE can compute \lim_{x\rightarrow 0}\frac{\sin(x)}{x}:
sage: limit(sin(x)/x,x=0) 1
Laws and properties
Continuity
Differentiation
SAGE can differentiate x^2\log(x+a) and \tan^{-1}(x)=\arctan(x):
sage: diff(x^2 * log(x+a), x) 2*x*log(x + a) + x^2/(x + a) sage: derivative(atan(x), x) 1/(x^2 + 1)
Another example:
sage: var('x k w') (x, k, w) sage: f = x^3 * e^(k*x) * sin(w*x); f x^3*e^(k*x)*sin(w*x) sage: f.diff(x) k*x^3*e^(k*x)*sin(w*x) + 3*x^2*e^(k*x)*sin(w*x) + w*x^3*e^(k*x)*cos(w*x) sage: print diff(f, x) 3 k x 2 k x 3 k x k x e sin(w x) + 3 x e sin(w x) + w x e cos(w x) sage: latex(f.diff(x)) {{{k {x}^{3} } {e}^{{k x}} } \sin \left( {w x} \right)} + {{{3 {x}^{2} } {e}^{{k x}} } \sin \left( {w x} \right)} + {{{w {x}^{3} } {e}^{{k x}} } \cos \left( {w x} \right)}
Laws
SAGE can verify the product rule
sage: function('f, g') (f, g) sage: diff(f(t)*g(t),t) f(t)*diff(g(t), t, 1) + g(t)*diff(f(t), t, 1)
the quotient rule
sage: diff(f(t)/g(t), t) diff(f(t), t, 1)/g(t) - (f(t)*diff(g(t), t, 1)/g(t)^2)
and linearity:
sage: diff(f(t) + g(t), t) diff(g(t), t, 1) + diff(f(t), t, 1) sage: diff(c*f(t), t) c*diff(f(t), t, 1)
Rates of change, velocity
Derivatives of polys, exps, trigs, log
Chain rule
Implicit differentiation
Higher derivatives
Applications
Related rates
Maximum and minimum values
You can find critical points of a piecewise defined function:
sage: x = PolynomialRing(RationalField(), 'x').gen() sage: f1 = x^0 sage: f2 = 1-x sage: f3 = 2*x sage: f4 = 10*x-x^2 sage: f = Piecewise([[(0,1),f1],[(1,2),f2],[(2,3),f3],[(3,10),f4]]) sage: f.critical_points() [5.0]
Optimization problems
Indeterminate Forms, L'Hopital's rule
Newton’s Method
Sequences and series
(Some schools teach this topic as part of integral calculus.)
Sequences
Series
Tests for Convergence
- o The Comparison Test o Absolute and Conditional Convergence o The Ratio Test o The Root Test
Power series
- o Shift the Origin o Convergence of Power Series
Taylor series
Taylor series:
sage: var('f0 k x') (f0, k, x) sage: g = f0/sinh(k*x)^4 sage: g.taylor(x, 0, 3) f0/(k^4*x^4) - 2*f0/(3*k^2*x^2) + 11*f0/45 - 62*k^2*f0*x^2/945 sage: maxima(g).powerseries('x',0) 16*f0*('sum((2^(2*i1-1)-1)*bern(2*i1)*k^(2*i1-1)*x^(2*i1-1)/(2*i1)!,i1,0,inf))^4
Of course, you can view the latexed version of this using view(g.powerseries('x',0)).
The Maclaurin and power series of \log({\frac{\sin(x)}{x}}) :
sage: f = log(sin(x)/x) sage: f.taylor(x, 0, 10) -x^2/6 - x^4/180 - x^6/2835 - x^8/37800 - x^10/467775 sage: [bernoulli(2*i) for i in range(1,7)] [1/6, -1/30, 1/42, -1/30, 5/66, -691/2730] sage: maxima(f).powerseries(x,0) ('sum((-1)^i2*2^(2*i2)*bern(2*i2)*x^(2*i2)/(i2*(2*i2)!),i2,1,inf))/2