Differences between revisions 11 and 12
Revision 11 as of 2008-11-14 13:42:00
Size: 3511
Editor: anonymous
Comment: converted to 1.6 markup
Revision 12 as of 2010-02-28 00:58:33
Size: 3637
Editor: slabbe
Comment: Added color markup.
Deletions are marked like this. Additions are marked like this.
Line 14: Line 14:
{{{ {{{#!python numbers=none
Line 27: Line 27:
{{{ {{{#!python numbers=none
Line 54: Line 54:
{{{ {{{#!python numbers=none
Line 62: Line 62:
{{{ {{{#!python numbers=none
Line 69: Line 69:
{{{ {{{#!python numbers=none
Line 94: Line 94:
{{{ {{{#!python numbers=none

Differential Calculus

Besides the examples on this page, please see the discussion in BasicCalculus.

Functions

Piecewise fcns, polynomials, exponential, logs, trig and hyperboic trig functions.

Limits

SAGE can compute \lim_{x\rightarrow 0}\frac{\sin(x)}{x}:

sage: limit(sin(x)/x,x=0)
1

Laws and properties

Continuity

Differentiation

SAGE can differentiate x^2\log(x+a) and \tan^{-1}(x)=\arctan(x):

sage: diff(x^2 * log(x+a), x)
2*x*log(x + a) + x^2/(x + a)
sage: derivative(atan(x), x)
1/(x^2 + 1)

Another example:

sage: var('x k w')
(x, k, w)
sage: f = x^3 * e^(k*x) * sin(w*x); f
x^3*e^(k*x)*sin(w*x)
sage: f.diff(x)
k*x^3*e^(k*x)*sin(w*x) + 3*x^2*e^(k*x)*sin(w*x) + w*x^3*e^(k*x)*cos(w*x)
sage: print diff(f, x)
           3   k x               2   k x               3   k x
        k x   e    sin(w x) + 3 x   e    sin(w x) + w x   e    cos(w x)
sage: latex(f.diff(x))
{{{k {x}^{3} } {e}^{{k x}} } \sin \left( {w x} \right)} + {{{3 {x}^{2} } {e}^{{k x}} } \sin \left( {w x} \right)} + {{{w {x}^{3} } {e}^{{k x}} } \cos \left( {w x} \right)}

Laws

SAGE can verify the product rule

sage: function('f, g')
(f, g)
sage: diff(f(t)*g(t),t)
f(t)*diff(g(t), t, 1) + g(t)*diff(f(t), t, 1)

the quotient rule

sage: diff(f(t)/g(t), t)
diff(f(t), t, 1)/g(t) - (f(t)*diff(g(t), t, 1)/g(t)^2)

and linearity:

sage: diff(f(t) + g(t), t)
diff(g(t), t, 1) + diff(f(t), t, 1)
sage: diff(c*f(t), t)
c*diff(f(t), t, 1)

Rates of change, velocity

Derivatives of polys, exps, trigs, log

Chain rule

Implicit differentiation

Higher derivatives

Applications

Maximum and minimum values

You can find critical points of a piecewise defined function:

sage: x = PolynomialRing(RationalField(), 'x').gen()
sage: f1 = x^0
sage: f2 = 1-x
sage: f3 = 2*x
sage: f4 = 10*x-x^2
sage: f = Piecewise([[(0,1),f1],[(1,2),f2],[(2,3),f3],[(3,10),f4]])
sage: f.critical_points()
[5.0]

Optimization problems

Indeterminate Forms, L'Hopital's rule

Newton’s Method

Sequences and series

(Some schools teach this topic as part of integral calculus.)

Sequences

Series

Tests for Convergence

  • o The Comparison Test o Absolute and Conditional Convergence o The Ratio Test o The Root Test

Power series

  • o Shift the Origin o Convergence of Power Series

Taylor series

Taylor series:

sage: var('f0 k x')
(f0, k, x)
sage: g = f0/sinh(k*x)^4
sage: g.taylor(x, 0, 3)
f0/(k^4*x^4) - 2*f0/(3*k^2*x^2) + 11*f0/45 - 62*k^2*f0*x^2/945
sage: maxima(g).powerseries('x',0)
16*f0*('sum((2^(2*i1-1)-1)*bern(2*i1)*k^(2*i1-1)*x^(2*i1-1)/(2*i1)!,i1,0,inf))^4

Of course, you can view the latexed version of this using view(g.powerseries('x',0)).

The Maclaurin and power series of \log({\frac{\sin(x)}{x}}) :

sage: f = log(sin(x)/x)
sage: f.taylor(x, 0, 10)
-x^2/6 - x^4/180 - x^6/2835 - x^8/37800 - x^10/467775
sage: [bernoulli(2*i) for i in range(1,7)]
[1/6, -1/30, 1/42, -1/30, 5/66, -691/2730]
sage: maxima(f).powerseries(x,0)
('sum((-1)^i2*2^(2*i2)*bern(2*i2)*x^(2*i2)/(i2*(2*i2)!),i2,1,inf))/2

Applications of Taylor series

Differential_Calculus (last edited 2010-02-28 00:58:33 by slabbe)