# Cryptography

## Linear feedback shift registers (LFSRs)

A special type of stream cipher is implemented in Sage, namely, a LFSR sequence defined over a finite field. Stream ciphers have been used for a long time as a source of pseudo-random number generators.

S. Golomb ("Shift register sequences", Aegean Park Press, Laguna Hills, Ca, 1967) gives a list of three statistical properties a sequence of numbers \mathbf{a}=\{ a_n \}_{n=1}^\infty, a_n\in \{0,1\}, should display to be considered "random". Define the autocorrelation of {\bf a} to be

C(k)=C(k,{\bf a})=\lim_{N\rightarrow \infty} {1\over N}\sum_{n=1}^N (-1)^{a_n+a_{n+k}}.

In the case where {\bf a} is periodic with period P then this reduces to

C(k)={1\over P}\sum_{n=1}^P (-1)^{a_n+a_{n+k}}.

Assume {\bf a} is periodic with period P .

• balance: \vert\sum_{n=1}^P(-1)^{a_n}\vert\leq 1 . low autocorrelation:

C(k)= \left\{ \begin{array}{cc} 1,& k=0,\\ \epsilon, & k\not= 0. \end{array}\right.

(For sequences satisfying these first two properties, it is known that \epsilon=-1/P must hold.) proportional runs property: In each period, half the runs have length 1 , one-fourth have length 2 , etc. Moveover, there are as many runs of 1 's as there are of 0 's.

A sequence satisfying these properties will be called {\bf pseudo-random}.

A general feedback shift register is a map f:{\bf F}_q^d\rightarrow {\bf F}_q^d of the form

\begin{displaymath} \begin{array}{c} f(x_0,...,x_{n-1})=(x_1,x_2,...,x_n),\\ x_n=C(x_0,...,x_{n-1}), \end{array}\end{displaymath}

where C:{\bf F}_q^d\rightarrow {\bf F}_q is a given function. When C is of the form

\displaystyle C(x_0,...,x_{n-1})=c_0x_0+...+c_{n-1}x_{n-1},

for some given constants c_i\in {\bf F}_q , the map is called a linear feedback shift register (LFSR). The sequence of coefficients c_i is called the key and the polynomial

\displaystyle C(x) = 1+ c_0x +...+c_{n-1}x^n

is sometimes called the {\bf connection polynomial}.

Example: Over GF(2) , if [c_0,c_1,c_2,c_3]=[1,0,0,1] then C(x) = 1 + x + x^4 ,

\displaystyle x_n = x_{n-4} + x_{n-1}, n\geq 4.

The LFSR sequence is then

\begin{displaymath} \begin{array}{c} 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1... ..., 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1,, ... . \end{array}\end{displaymath}

The sequence of 0,1 's is periodic with period P=2^4-1=15 and satisfies Golomb's three randomness conditions. However, this sequence of period 15 can be "cracked" (i.e., a procedure to reproduce g(x) ) by knowing only 8 terms! This is the function of the Berlekamp-Massey algorithm (James L. Massey, Shift-Register Synthesis and BCH Decoding, IEEE Trans. on Information Theory, vol. 15(1), pp. 122-127, Jan 1969.), implemented as lfsr_connection_polynomial (which produces the reverse of berlekamp_massey).

sage: F = GF(2)
sage: o = F(0)
sage: l = F(1)
sage: key = [l,o,o,l]; fill = [l,l,o,l]; n = 20
sage: s = lfsr_sequence(key,fill,n); s
[1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0]
sage: lfsr_autocorrelation(s,15,7)
4/15
sage: lfsr_autocorrelation(s,15,0)
8/15
sage: lfsr_connection_polynomial(s)
x^4 + x + 1
sage: berlekamp_massey(s)
x^4 + x^3 + 1