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Fix:

E an elliptic curve over Q,

α ∈ E(K) a non-torsion point.

Question: For which natural numbers n does there exist a prime p of OK such
that after reduction modulo p, α becomes a point of exact order n?

Exact order: [n]α ≡ O mod p, [k]α 6≡ O mod p for all k < n.

In coordinates: if E is in Weierstrass form, [n]α coincides with O if and only if
p divides the denominator of x([n]α).
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Alternative notation

Definition (Primitive prime divisor)

Let {an} be a sequence of ideals in OK . We say a prime ideal p of OK is a
primitive prime divisor of an if

p | an

∀1 ≤ k < n, p - ak

Definition (Zsigmondy set)

The Zsigmondy set of {an} is

Z{an} := {n ∈ N : an has no primitive prime divisor}

Theorem (Silverman)

The Zsigmondy set associated to the sequence of denominators of x([n]α) is
finite.
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Reduction mod p

Corollary

For all but finitely many n, there exists a prime p of OK such that after reduction mod
p, α has exact order n.

More examples of sequences with finite Zsigmondy sets:

1 Bang-Zsigmondy sequences an − bn, a > b > 0 coprime with a
b

not a root of

unity. (Bang, Zsigmondy)

2 Fibonacci sequence (Carmichael) and its generalizations

3 CM elliptic divisibility sequences

an a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

2n − 1 1 3 7 3 · 5 31 32 · 7 127 3 · 5 · 17 7 · 73 3 · 11 · 31 23 · 89 32 · 5 · 7 · 13

Fn 1 1 2 3 5 23 13 3 · 7 2 · 17 5 · 11 89 24 · 32

wn 1 1 1 -1 -2 −3 −1 7 11 22 · 5 −19 3 · −29

These are all examples of strong divisibility sequences:

gcd (am, an) = agcd (m,n).

Key idea: Strong divisibility + rapid growth ⇒ finite Zsigmondy set.
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Coinciding with periodic points

Dynamical analogue of this elliptic curve example? The identity is fixed point.

Let f (z) = zd , d ≥ 2, K a number field. Let α ∈ K be a point with infinite
forward f -orbit, and ζ ∈ Q̄ a non-zero f -periodic point.

Theorem (Bang, Zsigmondy, Schinzel 1974)

The sequence {(α)n − ζ} has finite, effectively computable Zsigmondy set.

This generalizes broadly:

Theorem (Ingram-Silverman 2007)

Let φ(z) ∈ Q(z) with degree d ≥ 2, α ∈ Q a point with infinite forward orbit,
and γ ∈ Q periodic for φ. Assume that γ is not totally ramified. Then the
numerator sequence associated to {φn(α)− γ} has finite Zsigmondy set.
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Reducing to period n

Broad idea in arithmetic dynamics: torsion points on elliptic curves and
preperiodic points of dynamical systems have similar properties.

So given f (z) ∈ K(z) and α ∈ K with infinite forward orbit, we ask: for which
n ∈ N does there exist a prime p of OK such that α has exact period n after
reduction mod p?

New question: Let f (z) ∈ K(z) and α ∈ K with infinite forward orbit. Is the
Zsigmondy set of (the numerator sequence of) {f n(α)− α} finite?

Big problem: These are not necessarily divisibility sequences!

unless... we consider the critical orbits of polynomials.
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Statements
The Mandelbrot set
More computation

Theorem (K.)

Let f (z) ∈ K [z] and α a critical point with infinite forward orbit. Then the
Zsigmondy set of {f n(α)− α} is finite.

Bad news: ineffective (uses a version of Roth’s theorem).

Theorem (K.)

Let f (z) = zd + c, c ∈ Q. Then the Zsigmondy set of {f n(0)} has at most 8
elements, and there is an effectively computable bound depending on c on the
maximal element.
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A computational question

Fix d , n. Does there exist c ∈ Q such that f (z) = zd + c has n in the
Zsigmondy set of the critical orbit?

Reduces to existence of integer points on a finite number of Thue curves:
(d , n) = (d , 2) : x + y = ±1 (not really Thue)
(d , n) = (2, 3) : x3 + 2x2y + xy 2 + y 3 = ±1
(d , n) = (4, 3) : x3(x3 + y 3)4 + y 15 = ±1
etc.

For d ≤ 10, n ≤ 4: Sage can solve this in reasonable time, calling thue.init
from PARI/GP. This is pretty weak.

Remark: f (z) = z2 − 7
4
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Critical recurrence

What’s the deal with c = − 7
4
?
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Better results through complex dynamics

Consider the case of d = 2. The hyperbolic components of the Mandelbrot set
are the loci where the critical orbit is in the basin of attraction of some
attracting periodic cycle of fixed period n.
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On the boundary of the Mandelbrot set

Let ρn := min { 1
4
, 1

22n−2 }. Define D(n) to be the set of complex parameters c

such that 0 lies in the basin of attraction of a point of period n with multiplier
less than ρn.

Theorem

Let f (z) = z2 + c, and suppose ∀n ∈ N, c 6∈ D(n). Then Zf ⊂ {1, 2, 3}.

Note:

This is the best possible bound, as expected!

This tells us where to look for possible higher values of n in Zsigmondy
sets: when c is a good rational approximation of a center of a hyperbolic
component.

Break: explain this! White board time.
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Zf ⊂ {1, 2, 3} for all c ∈ Q?

Checking rational approximations of centers of hyperbolic components?

For n ≤ 8, the first 22 convergents of the real centers of hyperbolic
components with attracting cycles of period n all have Zf ⊂ {1, 2}, except for
c = − 7

4
, with 3 ∈ Zf .

Better convergents seem to do worse:

Example: convergents of the center of the n = 4 hyperbolic component closest
to −2.

c −31
16

−33
17

−295
152

1213
625

14851
7652

16064
8277

1428483
736028

5729996
2952389

D 19 19 33 43 27 58 ...? ...?

Here D is the number of digits of the largest primitive prime factor!
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Powers in orbits

Existence of powers in orbits

Question: Fix f (z) ∈ K(z) and α ∈ K a point of infinite forward orbit. What
can we say about the set of indices n which have f n(z)− z = y m for some
y ∈ K , m > 1?

Not always finite, obviously (e.g. f (z) = g(z)2, α = 0).

Conjecture The set {n ∈ N : f n(z)− z = y m, y ∈ K ,m ≥ 2} consists of a
finite union of singletons and arithmetic progressions.

Faltings’ theorem says it suffices to bound m.
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Diophantine results for polynomials

Theorem (Schinzel, Tijdeman)

Let f (z) ∈ Q[z]. There exists an effectively computable bound M such that for
m ≥ M,

f (x) = y m

has no solutions for x , y ∈ Z with y 6= 0,±1.

This can be easily extended to S-integers in a number field, so long as y is not
a root of unity. S-units in orbits are finite, so this is ok, and with some work we
get:

Corollary

The conjecture holds for polynomials.

Holly Krieger Arithmetic of critical orbits and recurrence
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Connection to recurrence

Again, if we restrict to critical orbits (of polynomials), there is a dynamical
interpretation:

Away from primes of bad reduction or primes less than the degree, if p is a
prime divisor of f n(0) = y m, then there exists a point of small norm in Cp

which is p-adically attracting of small multiplier norm.

Why? Break: white board time!
So we can ask the stronger question: is the set of exponents m such that
pm|f n(z)− z for some n a bounded set?

Theorem (Benedetto-Ingram-Jones-Levy)

If f is a rational PCF map, the answer is yes, away from a finite set of primes.
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The moral of the conjecture

BIJL doesn’t help us with the question of powers in critical orbits; why do we
expect the stronger question to be true generally?

To finish: the moral, with f (z) = z2 + c. White board time!

Thanks!
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