The State of Arithmetic and Complex Dynamics in Sage

Benjamin Hutz

Department of Mathematical Sciences
Florida Institute of Technology
November 7, 2013
Sage-Days 55

Directory Structure

© sage/schemes/generic
(2) sage/schemes/projective
(3) sage/schemes/affine

Creating Projective and Affine Spaces

© Rings
(1) integer
(2) p-adic
(3) polynomial
(2) Fields
(3) Finite Fields

Affine and Projective Spaces

(1) ==, ! =, _init_(), _copy_()
(2) dimension
(coordinate_ring()
(change_ring()
(© normalize_coordinates()
(base_ring
© subscheme

Points

(1) ==, ! =, _init_(), _copy_()
(2) scale_by()
(3) clear_denominators()
(© change_ring()
© dehomogenize()
(0) normalize_coordinates()
(3) nth iterate(), orbit()
inherited
(0) codomain()
(2) base_ring
(3) -get

Morphisms

(1) normalize_coordinates()
(2) $==$, ! =, _init_(), _copy_()
(3) scale_by()
© dehomogenize()
(© degree()
(nth_iterate_map()
© dynatomic_polynomial([m,n])
(3) resultant() - only dimension 1
(is_morphism()
(1) primes of_bad_reduction()
(1) conjugate()
inherited
(1) domain, codomain
(2) base_ring()
(O) defining_polynomials(), --get_-

Finite Fields

© cyclegraph()
(2) orbit_structure()
(0) hash()

Heights: 14218 (5.13.beta2)

Points and Morphisms
(1) greens_function()
(2) height()
(3) canonical_height()

Rational Preperiodic points: 14219 (needs review)

(0) height_difference_bound()
(2) multiplier()
(3) possible_periods()
© rational_preimages()
((lift_to_rational_periodic()
(0) rational_(pre)periodic_points() (or graph)

Reviews

(14219-rational preperiodic points
(2) products of projective space
(3) Wehler K3

To Do: Minor Changes

(1) add switch to dynatomic polynomial to remove all multiple roots at each step $\left(\operatorname{gcd}\left(f, f^{\prime}\right)\right)$.
(2) global_height for $Z Z$.
(3) tutorials
(4) is_periodic(), is_preperiodic(), cyclestrucure() for rational points
(5) primes of bad reduction, is_morphism - add defining equations of subscheme to ideal to make these work over subschemes
(6) _validate() in projetive_space does not check that the polynomials are in the coordinate ring. (neither does affine_space)

1 R. $\langle t, s, w\rangle=$ PolynomialRing (GF (5) , 3)
2 P. $\langle\mathrm{x}, \mathrm{y}\rangle=$ ProjectiveSpace (QQ, 1)
3 P._validate([t-s])

To Do: More Involved

(1) What finite field functionality can also work in $\mathrm{Zmod}(\mathrm{n})$ for composite n.
(2) Lazy imports wherever possible.

To Do: Algorithm implementation

(1) FMV algorithm (automorphisms groups)
(2) Krumm-Doyle Algorithm (points of small height for number fields)
(3) Bruin-Molnar algorithm - minimal models
(4) Macualay resultant http://minimair.org/mr/

To Do: Algorithm implementation

(1) FMV algorithm (automorphisms groups)
(2) Krumm-Doyle Algorithm (points of small height for number fields)
(3) Bruin-Molnar algorithm - minimal models
(4) Macualay resultant http://minimair.org/mr/

More amorphous tasks

(1) What to do with critical points and PCF maps?
(2) p-adic dynamics

