
p-adics in FLINT

Jean-Pierre Flori

ANSSI

September 4, 2013

1 / 41



FLINT: Fast Library for Number Theory

C library on top of GMP/MPIR, MPFR (with support for NTL).

FLINT 1 (2007/xx – 2010/12) originally developed by Hart, Harvey
and Novocin.

FLINT 2 (2011/01 –) is a completele rewrite by Hart, Johansson and
Pancratz.

About 130k lines of C code.

Used by Sage since 2007.

Used by Singular since 2011/12, code by Martin Lee; not used in
Sage, see trac ticket 13331.

2 / 41



p-adics in FLINT

padic module in FLINT 2 since version 2.2 (released 2011/06/04),
mostly by Pancratz.

padic_poly, padic_matrix and qadic modules on Pancratz’s
github since a few years, to be included into version 2.4.

About 14k lines of C code.

backward uncompatible changes between versions 2.3 and 2.4 (more
on that later).

3 / 41



p-adics in Sage using FLINT

Unramified p-adics implementation using the new template interface.

See trac ticket 14304 and
https://github.com/saraedum/sage-renamed/tree/Zq.

This relies on the fmpz_mod_poly module.

No implementation using the padic, padic_poly and qadic

modules yet?

4 / 41

https://github.com/saraedum/sage-renamed/tree/Zq


Other applications

Point counting using deformation theory available on Pancratz’s
github.

Point counting à la Satoh, . . . , Harley using a custom qadic_dense

module available on my github.

Both of these are base on version 2.3, so have to be rebased.

5 / 41



Design decisions

Decision.

Each p-adic operation treats the input as exact data and requires the
desired output precision as a separate argument.

Rationale.

A number is just a number.

The intrinsic difficulty in p-adic arithmetic stems from the precision
loss, which depends on the particular operation.

Note that it would be straightforward to implement various precision
models on top of this.

6 / 41



Design decisions

An element x 6= 0 is typically stored as x = pu with v = ordp(x) ∈ Z and
u ∈ Z with p - u.
In 2.3 and before.

typedef struct {

fmpz u ;

long v ;

} padic_struct ;

After 2.3.

typedef struct {

fmpz u;

slong v;

slong N;

} padic_struct;

7 / 41



Design decisions

Additional information stored in a context object.
In 2.3 and before.

typedef struct {

fmpz_t p;

long N;

double pinv;

fmpz *pow;

long min;

long max;

enum padic_print_mode mode;

} padic_ctx_struct;

After 2.3 the precision is not stored anymore.

8 / 41



Design decisions

Remarks.

Improved maintainability by having one data type; no special case
depending on the size of p or pN ;

One could consider a different implementation performing basic
arithmetic to base pk with k s.t. such that pk fits in a word. This
would allow replacing mod pN operations by mod pk operations (with
a precomputed word-sized inverse) in many algorithms.

9 / 41



Functions for Qp

Addition, subtraction, negation

Multiplication, powers

Inversion

Inversion (with precomputed lifting structure)

Division

Square root

Exponential

Logarithm

Teichmueller lift

10 / 41



Benchmarks for Qp

We present some timings for arithmetic in Qp mod pN where p = 17,
N = 2i, i = 0, ..., 10, comparing the three systems Magma (V2.19-2),
Sage (current github, 5.12.beta4) and FLINT (current github) on a
machine with Intel Core i7-2620M CPU running at 2.70GHz.
To avoid worrying about taking the same random sequences of elements,
we instead fix elements a = 33N , b = 52N (and variations thereof) modulo
pN .
We consider the following operations:

Addition

Multiplication

Inversion

Square root

Teichmueller lift

Exponential

Logarithm

11 / 41



Addition

Signature

void padic_add(z, x, y, ctx)

Contract

Assumes that x and y are reduced modulo pN and returns z in reduced
form, too.

Algorithm

Avoids expensive modulo operation, replacing this by one comparison and
at most one subtraction.

12 / 41



Addition

0 2 4 6 8 10

102

103

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

13 / 41



Multiplication

Signature

void padic_mul(z, x, y, ctx)

Contract

Makes no assumptions on x and y, returns z reduced modulo pN .

14 / 41



Multiplication

0 2 4 6 8 10

102

103

104

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

15 / 41



Inversion

Signature

void padic_inv(z, x, ctx)

Contract

Makes no assumptions on x.

Algorithm

Hensel lifting on g(X) = xX − 1, starting from an inverse in Fp and using
the update formula z = z + z(1− xz).

16 / 41



Inversion

0 2 4 6 8 10

102

103

104

105

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

17 / 41



Square root

Signature

int padic_sqrt(z, x, ctx)

Contract

Makes no assumptions on x. Returns whether x is actually a square and if
so computes its square root.

Algorithm

Hensel lifting to compute an inverse square root to half precision.

The final step performs the needed inversion as well.

18 / 41



Square root

0 2 4 6 8 10

103

104

105

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

19 / 41



Teichmueller lift

Signature

void padic_teichmuller(z, x, ctx)

Contract

Assumes only that ordp(x) = 0.

Algorithm

Hensel lifting, avoiding inversions.

20 / 41



Teichmueller lift

0 2 4 6 8 10
101

102

103

104

105

106

107

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

21 / 41



Exponentiation

Signature

int padic_exp(z, x, ctx)

Contract

Return whether the series converges, and if so computes the exponential.

Algorithm

Evaluate the truncated series, multiplying by the common factorial in
denominators, hence requiring only one inversion.

Rectangular splitting.

Balanced splitting.

22 / 41



Exponentiation

0 2 4 6 8 10

101

103

105

107

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

23 / 41



Logarithm

Signature

int padic_log(z, x, ctx)

Contract

Return whether the series converges, and if so computes the logarithm.

Algorithm

Evaluate the truncated series, performing an inversion for each summand.

Rectangular splitting.

Balanced splitting (quasi-linear in N when p is fixed).

à la SST.

24 / 41



Logarithm

0 2 4 6 8 10
101

102

103

104

105

106

107

108

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

25 / 41



Polynomials over Qp

We represent a non-zero polynomial f(X) ∈ Qp[X] as

f(X) = pv(a0 + a1X + · · ·+ anX
n)

where a0, . . . , an ∈ Z and, for at least one i , p does not divide ai.

26 / 41



Functions for Qp[X]

Conversions to polynomials over Z and Q
Coefficient manipulation

Addition, subtraction, negation

Scalar multiplication

Multiplication

Powers

Series inversion

Derivative

Evaluation

Composition

27 / 41



Unramified extensions Qq

We represent an unramified extension of Qp as

Qq = Qp[X]/(f(X))

where f(X) mod p is separable, storing f(X) in a data structure for
sparse polynomials.
This allows for the reduction of a degree n polynomial modulo f(X) in
linear time O(n) (but slow Frobenius substitutions...).

28 / 41



Functions for Qq

Addition, subtraction, negation

Multiplication

Powers

Inversion

Exponential

Logarithm

Frobenius

Teichmueller lift

Trace

Norm

29 / 41



Benchmarks for Qq

We present some timings for arithmetic in Qq mod pN where p = 17,
N = 2i, i = 0, ..., 10, comparing the three systems Magma (V2.19-2),
Sage (current github, 5.12.beta4) and FLINT (current github) on a
machine with Intel Core i7-2620M CPU running at 2.70GHz.
To avoid worrying about taking the same random sequences of elements,
we instead fix elements as before.
We consider the following operations:

Exponential

Logarithm

Frobenius

Trace

Norm

30 / 41



Exponential

Signature

int qadic_exp(z, x, ctx)

Contract

Return whether the series converges, and if so computes the exponential.

Algorithm

Evaluate the truncated series, performing an inversion at each step.

Rectangular splitting.

Balanced splitting.

31 / 41



Exponential

0 2 4 6 8 10
101

103

105

107

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

32 / 41



Addition

Signature

int qadic_log(z, x, ctx)

Contract

Return whether the series converges, and if so computes the logarithm.

Algorithm

Evaluate the truncated series, performing an inversion for each summand.

Rectangular splitting.

Balanced splitting.

33 / 41



Logarithm

0 2 4 6 8 10

102

103

104

105

106

107

108

109

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

34 / 41



Frobenius

Signature

void qadic_frobenius(z, x, k, ctx)

Contract

Computes z = Σk(x).

Algorithm

Compute Σk(X) using Hensel lifting.

Perform polynomal composition modulo pN and f(X).

Generalize to use rectangular splitting.

35 / 41



Frobenius

0 2 4 6 8 10

105

106

107

108

109

1010

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

36 / 41



Trace

Signature

void qadic_trace(z, x, ctx)

Contract

No assumptions are made on x.

Algorithm

Compute the traces of Xi iteratively.

Compute the trace of x.

37 / 41



Trace

0 2 4 6 8 10

104

105

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

38 / 41



Norm

Signature

void qadic_norm(z, x, ctx)

Contract

No assumptions are made on x.

Algorithm

Using an analytical formula.

Using resultants.

39 / 41



Norm

0 2 4 6 8 10

102

103

104

105

106

107

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

40 / 41



Future features?

Specialize code for finite fields.

Modular reduction for non-sparse modulus.

Other types of extensions.

Specific implementations for p = 2.

41 / 41


