Note that the data below is extremely dated. Sage 4 was released in 2009.
List of Computations where Sage is Noticeably Faster than Magma....
A binary of Sage 4.0.1-rc1 is available at /home/wbhart/sage-4.0.1.rc1/sage on eno
A binary of Magma is available in /usr/local/magma-2.15/bin
Machines used
eno: (a script to stop background processes for benchmarking purposes is available at /home/wbhart/script - but please stop it when done)
4-core: model name : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz
Benchmarks
* Sage is faster at multiplying large numbers
sage: a=ZZ.random_element(2^100000) sage: b=ZZ.random_element(2^100000) sage: time c = [a*b for i in [1..10000]] CPU times: user 6.20 s, sys: 0.00 s, total: 6.20 s Wall time: 6.20 s sage: aa=magma(a) sage: bb=magma(b) sage: magma.eval('time z:=[%s*%s : i in [1..10000]]'%(aa.name(), bb.name())) 'Time: 11.210'
* Sage is faster at factoring large numbers
sage: n=ZZ.random_element(10^29).next_prime()*ZZ.random_element(10^31).next_prime() sage: n 16930046570310043023762335280694777006455061519242383863661 sage: time qsieve(n) CPU times: user 0.00 s, sys: 0.00 s, total: 0.01 s Wall time: 10.05 s ([9594859962293488319946733153, 1764491262701368590074626129037], '') sage: n=ZZ.random_element(10^34).next_prime()*ZZ.random_element(10^36).next_prime() sage: n 875905585594859559501188824768701936589874544145799136043283226938267 sage: time qsieve(n) CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 82.13 s ([1763643785109465131425492782015799, 496645407077197397173724652476563133], '')
> n:=16930046570310043023762335280694777006455061519242383863661; > time Factorization(n); [ <9594859962293488319946733153, 1>, <1764491262701368590074626129037, 1> ] Time: 30.640 > n:=875905585594859559501188824768701936589874544145799136043283226938267; > time Factorization(n); [ <1763643785109465131425492782015799, 1>, <496645407077197397173724652476563133, 1> ] Time: 284.390
* Sage is faster at *proving* primality
sage: is_prime? <SNIP> Returns True if `x` is prime, and False otherwise. The result is proven correct - *this is NOT a pseudo-primality test!*. <SNIP> sage: n = ZZ.random_element(2^1000) sage: n=next_prime(n) sage: time is_prime(n) CPU times: user 6.02 s, sys: 0.00 s, total: 6.02 s Wall time: 6.02 s True sage: nn=magma(n) sage: magma.eval('time IsPrime(%s)'%(nn.name())) 'true\nTime: 22.330'
* Sage is a tad faster at computing partitions
sage: time z=number_of_partitions(1000000) CPU times: user 0.05 s, sys: 0.00 s, total: 0.05 s Wall time: 0.05 s sage: magma.eval('time z:=NumberOfPartitions(1000000)') 'Time: 233.960' sage: 233.96/0.05 4679.20000000000
* .... and Bernoulli numbers
sage: time z=bernoulli(10000); CPU times: user 0.04 s, sys: 0.00 s, total: 0.04 s Wall time: 0.04 s
> time z:=BernoulliNumber(10000); Time: 464.250
464.25/0.04 = 11606.25
* Computing factorials (Sage is more than twice the speed).
[wbhart@eno sage-4.0.1.rc1]$ ./sage ---------------------------------------------------------------------- | Sage Version 4.0.1.rc1, Release Date: 2009-06-04 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: magma.version() ((2, 15, 8), 'V2.15-8') sage: time n = factorial(10^6) CPU times: user 0.57 s, sys: 0.01 s, total: 0.58 s Wall time: 0.59 s sage: time magma.eval('time n := Factorial(10^6);') CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 1.45 s 'Time: 1.440' sage: time magma.eval('time n := Factorial(10^7);') CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 27.33 s 'Time: 27.300' sage: time n = factorial(10^7) CPU times: user 11.50 s, sys: 0.25 s, total: 11.75 s Wall time: 11.75 s sage: 27.30/11.75 2.32340425531915
* Large degree polynomial multiplication modulo n (Sage is three times as fast).
[wbhart@eno sage-4.0.1.rc1]$ ./sage ---------------------------------------------------------------------- | Sage Version 4.0.1.rc1, Release Date: 2009-06-04 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: magma.version() ((2, 15, 8), 'V2.15-8') sage: R.<t> = Zmod(next_prime(8000^3))[] sage: ff = R.random_element(degree=3200) sage: time v = [ff*ff for i in [1..100]] CPU times: user 0.18 s, sys: 0.00 s, total: 0.18 s Wall time: 0.18 s sage: S = magma(R) sage: f = magma(ff) sage: magma.eval('time z:=[%s*%s : i in [1..100]]'%(f.name(), f.name())) 'Time: 0.530'
* Large degree polynomial multiplication over ZZ (Sage is five times as fast).
---------------------------------------------------------------------- | Sage Version 4.0.1.rc1, Release Date: 2009-06-04 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: R.<x>=ZZ['x'] sage: ff = R.random_element(degree=3200) sage: gg = R.random_element(degree=3200) sage: time v = [ff*gg^i for i in [1..40]] CPU times: user 22.29 s, sys: 0.22 s, total: 22.50 s Wall time: 22.51 s sage: S = magma(R) sage: f = magma(ff) sage: g = magma(gg) sage: magma.eval('time z:=[%s*%s^i : i in [1..40]]'%(f.name(), g.name())) 'Time: 112.820'
* Application of polynomial multiplication to modular forms -- Computing the q-expansion of the Delta function (sage is over 5 times faster than Magma):
[wstein@eno sage-4.0.1]$ ./sage ---------------------------------------------------------------------- | Sage Version 4.0.1, Release Date: 2009-06-06 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: time d = delta_qexp(2*10^6) CPU times: user 17.20 s, sys: 0.73 s, total: 17.93 s Wall time: 17.94 s sage: magma.eval('R<q> := PowerSeriesRing(IntegerRing());') '' sage: magma.eval('time d := Delta(q + O(q^(2*10^6)));') 'Time: 94.920' sage: 94.920/17.94 5.29096989966555
* Division of a polynomial by an integer is faster in Sage
sage: R=ZZ['x'] sage: f = 3876877658987687 * R.random_element(10000) sage: timeit("f//3876877658987687") 625 loops, best of 3: 294 µs per loop sage: ff = magma(f) sage: magma.eval('time z:=[%s div 3876877658987687 : i in [1..1000]]'%(ff.name())) 'Time: 1.010' sage: 0.00101/0.000294 3.43537414965986
* Sage is asymptotically faster for Quotrem over ZZ (used in computation of Sturm sequences)
sage: R.<x>=ZZ['x'] sage: ff = R.random_element(degree=10000) sage: gg = R.random_element(degree=5000) sage: time v=ff.quo_rem(gg) CPU times: user 0.17 s, sys: 0.02 s, total: 0.18 s Wall time: 0.18 s sage: f=magma(ff) sage: g=magma(gg) sage: magma.eval('time z:=Quotrem(%s,%s)'%(f.name(), g.name())) 'Time: 1.970'
* Polynomial GCD over ZZ is faster in Sage
sage: R=ZZ['x'] sage: f=R.random_element(100) sage: g=R.random_element(100) sage: h=R.random_element(100) sage: s=f*g sage: t=f*h sage: time v = [s.gcd(t) for i in [1..1000]] CPU times: user 0.15 s, sys: 0.00 s, total: 0.16 s Wall time: 0.16 s sage: ss=magma(s) sage: tt=magma(t) sage: magma.eval('time u:=[Gcd(%s,%s) : i in [1..1000]]'%(ss.name(), tt.name())) 'Time: 1.230'
* Exact logarithm of integers is faster in Sage.
sage: def zlog(m, n, k): ....: for i in range(0, m/1000): ....: a = ZZ.random_element(n)+2 ....: b = ZZ.random_element(k) ....: c = a^b ....: for j in range (0, 1000): ....: c.exact_log(a) ....: sage: time zlog(1000000, 100, 100) CPU times: user 0.62 s, sys: 0.23 s, total: 0.85 s Wall time: 0.85 s sage: time zlog(1000000, 2^50, 100) CPU times: user 2.10 s, sys: 0.27 s, total: 2.36 s Wall time: 2.36 s sage: time zlog(1000000, 100, 2^10) CPU times: user 1.75 s, sys: 0.26 s, total: 2.01 s Wall time: 2.01 s
> procedure z_log(m, n, k) procedure> for i := 0 to (m div 1000) do procedure|for> a := Random(n) + 2; procedure|for> b := Random(k); procedure|for> c := a^b; procedure|for> for j := 1 to 1000 do procedure|for|for> d := Ilog(a, c); procedure|for|for> end for; procedure|for> end for; procedure> end procedure; > time z_log(1000000, 100, 100); Time: 1.180 > time z_log(1000000, 2^50, 100); Time: 5.830 > time z_log(1000000, 100, 2^10); Time: 6.450
* Univariate polynomial multiplication over a finite field
sage: p=ZZ.random_element(2^25).next_prime() sage: p 26540959 sage: f=R.random_element(4000) sage: g=R.random_element(4000) sage: time z = [f*g for i in [1..100]] CPU times: user 0.39 s, sys: 0.00 s, total: 0.39 s Wall time: 0.39 s sage: ff=magma(f) sage: gg=magma(g) sage: magma.eval('time z:=[%s*%s : i in [1..100]]'%(ff.name(), gg.name())) 'Time: 1.040'
* Multivariate polynomial multiplication over a finite field (Sage is more than twice as fast at this "Fateman benchmark"):
sage: R.<x,y,z> = GF(389)[] sage: f = (x+y+z+1)^20 sage: time g = f*(f+1) CPU times: user 0.12 s, sys: 0.00 s, total: 0.12 s Wall time: 0.12 s sage: ff = magma(f) sage: time magma.eval('time g := %s*(%s+1);'%(ff.name(),ff.name())) CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.27 s 'Time: 0.250'
* Multiplication of random dense matrices over GF(2)
sage: A = random_matrix(GF(2),10^4,10^4) sage: B = random_matrix(GF(2),10^4,10^4) sage: time C = A*B CPU times: user 1.41 s, sys: 0.00 s, total: 1.41 s Wall time: 1.43 s
> A:=RandomMatrix(GF(2),10^4,10^4); > B:=RandomMatrix(GF(2),10^4,10^4); > time C := A*B; Time: 3.720
* Rank of random dense matrices over GF(2) (Sage is more than twice the speed).
---------------------------------------------------------------------- | Sage Version 4.0.1.rc1, Release Date: 2009-06-04 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: A = random_matrix(GF(2),10^4,10^4) sage: %time A.rank() CPU times: user 1.20 s, sys: 0.01 s, total: 1.20 s Wall time: 1.20 s 9999 sage: A = random_matrix(GF(2),2*10^4,2*10^4) sage: %time A.rank() CPU times: user 9.34 s, sys: 0.02 s, total: 9.36 s Wall time: 9.36 s 19937 sage: A = random_matrix(GF(2),2*10^4,2*10^4) sage: %time A.echelonize(algorithm='pluq') CPU times: user 6.79 s, sys: 0.01 s, total: 6.80 s Wall time: 6.80 s sage: A = random_matrix(GF(2),3.2*10^4,3.2*10^4) sage: %time A.rank() CPU times: user 31.57 s, sys: 0.05 s, total: 31.62 s Wall time: 31.63 s 19937 sage: %time A.echelonize(algorithm='pluq') CPU times: user 27.10 s, sys: 0.04 s, total: 27.14 s Wall time: 27.15 s
Magma V2.15-8 Thu Jun 4 2009 21:58:05 on eno [Seed = 3168701748] Type ? for help. Type <Ctrl>-D to quit. > A:=RandomMatrix(GF(2),10^4,10^4); > time Rank(A); 9999 Time: 3.040 > A:=RandomMatrix(GF(2),2*10^4,2*10^4); > time Rank(A); 19999 Time: 17.750 > A:=RandomMatrix(GF(2),32*10^3,32*10^3); > time Rank(A); 31999 Time: 62.980
* Fast HNF and determinant for integer matrices, especially as the entries get large.
[wstein@eno sage-4.0.1]$ ./sage ---------------------------------------------------------------------- | Sage Version 4.0.1, Release Date: 2009-06-06 | | Type notebook() for the GUI, and license() for information. | ---------------------------------------------------------------------- sage: a = random_matrix(ZZ,300,x=-2^128,y=2^128) sage: time d = a.det() CPU times: user 5.97 s, sys: 0.02 s, total: 5.98 s Wall time: 5.99 s sage: b = magma(a) sage: time magma.eval('time d := Determinant(%s);'%b.name()) CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 35.59 s 'Time: 35.500' sage: time h = a.hermite_form() CPU times: user 23.99 s, sys: 0.10 s, total: 24.09 s Wall time: 24.17 s sage: time magma.eval('time h := HermiteForm(%s);'%b.name()) CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 90.31 s 'Time: 90.200'
A bigger det where Sage is *ten* times faster:
sage: a = random_matrix(ZZ,1000,x=-2^128,y=2^128) sage: time d = a.det() CPU times: user 122.57 s, sys: 0.25 s, total: 122.82 s Wall time: 122.90 s sage: b = magma(a) sage: time magma.eval('time d := Determinant(%s);'%b.name()) CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 1262.36 s 'Time: 1261.980'
* Characteristic polynomials of integer matrices with large entries (here Sage is over 4 times faster):
sage: a = random_matrix(ZZ,100,x=-2^512,y=2^512) sage: time f = a.charpoly() CPU times: user 16.76 s, sys: 0.00 s, total: 16.76 s Wall time: 16.76 s sage: b = magma(a) sage: time magma.eval('time f := CharacteristicPolynomial(%s)'%b.name()) CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 71.27 s 'Time: 71.120' sage: 71.120/16.76 4.24343675417661
* Modular composition over GF(2)
sage: P.<x> = GF(2)[] sage: d = 5*10^4; f,g,h = P.random_element(d),P.random_element(d),P.random_element(d) sage: %time r = f.modular_composition(g,h) CPU times: user 2.69 s, sys: 0.01 s, total: 2.69 s Wall time: 2.70 s
sage: fM,gM,hM = magma(f),magma(g),magma(h) sage: t = magma.cputime(); rM = fM.ModularComposition(gM,hM); magma.cputime(t) 13.44 sage: rM == magma(r) True
sage: d = 5*10^5; f,g,h = P.random_element(d),P.random_element(d),P.random_element(d) sage: %time r = f.modular_composition(g,h) ^ACPU times: user 288.13 s, sys: 0.14 s, total: 288.26 s Wall time: 288.34 s sage: %time r = f.modular_composition(g,h,algorithm='ntl') CPU times: user 303.45 s, sys: 0.04 s, total: 303.49 s Wall time: 303.60 s sage: fM,gM,hM = magma(f),magma(g),magma(h) sage: t = magma.cputime(); rM = fM.ModularComposition(gM,hM); magma.cputime(t) 832.03999999999996
* Sage computes ranks of elliptic curves and generators, fast... and correctly (see Rogers, N.F., Rank Computations for the congruent number elliptic curves, Experimental Mathematics, 9 (2000), 591-594.)
sage: D=6611719866 sage: E=EllipticCurve([0,0,0,-D^2,0]) sage: time E.rank() CPU times: user 0.01 s, sys: 0.01 s, total: 0.02 s Wall time: 3.20 s 6 sage: time E.gens() CPU times: user 0.07 s, sys: 0.06 s, total: 0.13 s Wall time: 5.89 s [(247424194842066/37249 : 373863724821481185720/7189057 : 1), (165541824817/16 : 51806810701954601/64 : 1), (15062000442 : 1660900534642656 : 1), (548503784857/36 : -365985935192610019/216 : 1), (11638545941238203281/246490000 : 39314069377271931544287972679/3869893000000 : 1), (514136077885092448181278/169697035249 : -368651568597676351513664298941602072/69905505791578807 : 1)]
> D:=6611719866; > E:=EllipticCurve([0,0,0,-D^2,0]); > time Rank(E); Warning: rank computed (2) is only a lower bound (It may still be correct, though) 2 Time: 9.640 > time Generators(E); Height bound (50.6331) on point search is too large -- reducing to 15.0000 This means that the computed group may only generate a group of finite index in the actual group. [ (-6611719866 : 0 : 1), (0 : 0 : 1), (-156630507 : -82723846945707 : 1), (213545146551959209/902500 : -98642697824946986013197323/857375000 : 1) ] Time: 57.970
* Computation with Brandt modules, i.e., using quaternion algebras to compute Hecke module isomorphic to free abelian group on enhanced supersingular elliptic curves in characteristic p (in the example below, Sage is over 4 times faster):
sage: time B = BrandtModule(59,15) CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00 s sage: time B.hecke_matrix(2) CPU times: user 9.29 s, sys: 0.27 s, total: 9.56 s Wall time: 9.57 s 116 x 116 dense matrix over Rational Field sage: time B.hecke_matrix(3) CPU times: user 0.03 s, sys: 0.00 s, total: 0.03 s Wall time: 0.03 s 116 x 116 dense matrix over Rational Field sage: time B.hecke_matrix(5) CPU times: user 0.02 s, sys: 0.00 s, total: 0.02 s Wall time: 0.02 s 116 x 116 dense matrix over Rational Field sage: time B.hecke_matrix(7) CPU times: user 0.02 s, sys: 0.00 s, total: 0.03 s Wall time: 0.03 s 116 x 116 dense matrix over Rational Field sage: magma.eval('time B := BrandtModule(59,15);') 'Time: 40.820' sage: magma.eval('time T2 := HeckeOperator(B,2);') 'Time: 0.330' sage: magma.eval('time T3 := HeckeOperator(B,3);') 'Time: 0.360' sage: magma.eval('time T5 := HeckeOperator(B,5);') 'Time: 0.390' sage: magma.eval('time T7 := HeckeOperator(B,7);') 'Time: 0.400'