Canonical Minimal Models of Elliptic Curves Over Number Fields

Alyson Deines and Andrew Ohana

Let K be a number field with ring of integers \mathcal{O}_{K} and unit group U_{K}. Let U_{K}^{12} denote all twelfth powers of units. For $n \in \mathcal{O}_{K}^{\times}$and $m \in \mathcal{O}_{K}$ let $A_{n}(m)$ denote fixed representation of $m \bmod n \mathcal{O}_{K}$. We say $m \in \mathcal{O}_{K}$ is restricted $\bmod n$ if $A_{n}(m)=m$.

Now let E be an elliptic curve

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

with coefficients $a_{1}, \cdots, a_{6} \in \mathcal{O}_{K}$. This form is known as Weierstrass form. If τ is an isomorphism $\tau: E \rightarrow E^{\prime}$, we will refer to all invariants of E^{\prime} as $a_{1}^{\prime}, \cdots, a_{6}^{\prime}$, $c_{4}^{\prime}, c_{6}^{\prime}, \Delta^{\prime}$, etc.

We say E is of restricted type if a_{1}, a_{3} are restricted $\bmod 2$ and a_{2} is restricted mod 3. From Connell's Handbook for Elliptic Curves, Proposition 5.2.4, there exists a unique \mathcal{O}_{K}-isomorphism of the form $\tau=[r, s, t, 1]$ such that $E^{\prime}=\tau E$ is of restricted type.

What we will prove is that given a deterministic way to choose a residue class of U_{K} / U_{K}^{12} and given an isomorphism class of elliptic curves and an ideal (Δ) generated by the discriminant Δ of one of the curves in this isomorphism class, we can define and compute a unique representative of this isomorphism class that has discriminant generating the ideal (Δ). Further, \mathcal{O}_{K} is a PID then we can choose a unique representative for any isomorphism class of elliptic curves.

For this it will be useful to introduce a function $f: \mathcal{O}_{K} \backslash\{0\} \rightarrow \mathcal{O}_{K} \backslash\{0\}$ such that $f(x) / x \in U_{K}^{12}$ and if $y / x \in U_{K}^{12}$ then $f(x)=f(y)$. This function represents our deterministic way to choose a residue class of U_{K} / U_{K}^{12} as there is no canonical way. For example, if $K=\mathbf{Q}(\sqrt{5})$ and $a=\frac{1+\sqrt{5}}{2}$, then $U_{K}=\langle-1\rangle \times\langle a\rangle$ and $U_{K}^{12}=\left\langle a^{12}\right\rangle$. So we can fix f to take units to their residue in U_{K} / U_{K}^{12} by the map

$$
f\left((-1)^{n} a^{m}\right)=(-1)^{n} a^{\bar{m}}
$$

where \bar{m} is m reduced modulo 12 . Notice that even with $\mathbf{Q}(\sqrt{5})$ we had to make a choice of basis. We could have easily worked with $a^{-1}=\bar{a}=\frac{1-\sqrt{5}}{2}$ instead as this also generates $\langle a\rangle$.

There are several ideas about how to choose f. One idea is to just use whatever basis Pari returns. (What algorithm does this use?) Another idea is possibly using heights in a clever way. Both need to be looked into further.

Lemma 1. Let E be an elliptic curve in Weierstrass form as above. Then there exists an isomorphism $\tau: E \rightarrow E^{\prime}$ such that $\Delta^{\prime}=f(\Delta)$ and Δ^{\prime} is a fixed point of f.

Proof. As $f(\Delta) / \Delta \in U_{K}^{12}$ there is a unit u such that $u^{12} f(\Delta)=\Delta$, so if we apply the transformation $[0,0,0, u]$ we get a new Weierstrass equation $y^{2}+a_{1}^{\prime} x y+a_{3}^{\prime} y=$ $x^{3}+a_{2}^{\prime} x^{2}+a_{4}^{\prime} x+a_{6}^{\prime}$ where $u^{i} a_{i}^{\prime}=a_{i}$ with discriminant such that $\Delta=u^{12} \Delta^{\prime}$. Additionally note that Δ^{\prime} is a fixed point of f since $\Delta^{\prime} / \Delta=f(\Delta) / \Delta \in U_{K}^{12}$, so $f\left(\Delta^{\prime}\right)=f(\Delta)=\Delta^{\prime}$.

Theorem 1. Let K be a number field with only the trivial 12-th roots of unity. Let E be an elliptic curve over K with Weierstrass model as above. Then E has a unique restricted Weierstrass model depending only on Δ and f.

Proof. By the previous lemma, we can assume E has discriminant $\Delta=f(\Delta)$.

To show uniqueness, suppose that E and E^{\prime} are isomorphic elliptic curves with discriminants Δ, Δ^{\prime} respectively, such that $f(\Delta)=\Delta=\Delta^{\prime}=f\left(\Delta^{\prime}\right)$, and restricted models:

$$
\begin{aligned}
& E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \\
& E^{\prime}: y^{2}+b_{1} x y+b_{3} y=x^{3}+b_{2} x^{2}+b_{4} x+b_{6}
\end{aligned}
$$

Let $\tau=[r, s, t, u]$ be an isomorphism $\tau: E \rightarrow E^{\prime}$.
Then:

$$
\begin{align*}
u b_{1} & =a_{1}+2 s \tag{1}\\
u^{2} b_{2} & =a_{2}-s a_{1}+3 r-s^{2} \tag{2}\\
u^{3} b_{3} & =a_{3}+r a_{1}+2 t \tag{3}\\
u^{4} b_{4} & =a_{4}-s a_{3}+2 r a_{2}-(t+r s) a_{1}+3 r^{2}-2 s t \tag{4}\\
u^{6} b_{6} & =a_{6}+r a_{4}+r^{2} a_{2}+r^{3}-t a_{3}-t^{2}-r t a_{1} \tag{5}
\end{align*}
$$

Since τ is an isomorphism of E preserving $\Delta, \Delta=u^{12} \Delta^{\prime}=\Delta^{\prime}$. As the only 12 -th roots of unity are square roots of unity, $u= \pm 1$.
$\boldsymbol{u}=1$. Considering (1), $b_{1}=A_{2}\left(b_{1}\right)=A_{2}\left(a_{1}\right)=a_{1}$, so $s=0$. Similarly, $r=0$ and $t=0$ so $\tau=[0,0,0,1]$ is the identity transformation. Thus E and E^{\prime} are the same global minimal models.
$\boldsymbol{u}=-1$. Rearranging (1), $a_{1}+b_{1}=-2 s$. As $a_{1}=A_{2}\left(a_{1}\right)$ and $b_{1}=A_{2}\left(b_{1}\right), a_{1}=b_{1}$ and so $s=-a_{1}$. Plugging this into (2), $b_{2}=a_{2}+3 r$. As b_{2} and a_{2} are 3 -restricted, we can use the same argument to show $r=0$. Similarly, we have that $t=-a_{3}=-b_{3}$. From here it is trivial to verify that this transformation gives $b_{4}=a_{4}$ and $b_{6}=a_{6}$ we know r, s, t and u.

Example: Let E be the elliptic curve
$y^{2}+(2 a-2) x y+(-88 a+144) y=x^{3}+(-4 a+8) x^{2}+(-800 a+1296) x+(-31168 a+50432)$.
Then E has discriminant
$1118330236928 a-1809496334336=(-28657 a+46368) \cdot(-4 a+3) \cdot 2^{12} \cdot(a-7) \cdot(25 a+244)$,
and $-28657 a+46368=(-1) a^{-23}$. Using the above transformation, E^{\prime}

$$
y^{2}=x^{3}+(-a-1) x^{2}+(16 a+40) x+(-32 a+204)
$$

is an isomorphic curve which is of restricted type and has discriminant

$$
-4968448 a-27189248=(-a) \cdot(-4 a+3) \cdot 2^{12} \cdot(a-7) \cdot(25 a+244)
$$

Notice that restricted type does not make any statements about minimality.

In many cases, such as when K has class number 1 , an isomorphism class of elliptic curves has global minimal models, i.e.,Weierstrass models with a smallest possible discriminant keeping integral coefficients. Any two curves in an isomorphism class in global minimal Weierstrass form have discriminants which generate the same ideal. Thus by choosing a function f which gives a deterministic way to pick representatives of U_{K} / U_{K}^{12}, we have fixed both f and Δ for the entire isomorphism class of curves. Since the isomorphism used for finding restricted models preserves integrality, we have the following theorem:

Theorem 2. Let K be a number field with only the trivial 12-th roots of unity. If \mathcal{E} is an isomorphism class of elliptic curves and has global minimal models, then by fixing representatives in the residue classes of U_{K} / U_{K}^{12} we can define and compute unique restricted global minimal models, i.e. we can define and compute a unique representative for \mathcal{E}.

Example: Let E be as above. Then E has global minimal model $E^{\prime \prime}$:

$$
y^{2}+(a+1) x y=x^{3}+(a-1) x^{2}+(-39 a+65) x+(-491 a+795)
$$

with discriminant
$273029843 a-441771566=(-28657 a+46368) \cdot(-4 a+3) \cdot(a-7) \cdot(25 a+244)$.
If we then find the restricted model of $E^{\prime \prime}$, we will have the unique representative of this isomorphism class E_{u} :

$$
y^{2}+a x y+a y=x^{3}+(a+1) x^{2}+(2 a+3) x+(2 a+5)
$$

with discriminant

$$
-1213 a-6638=(-a) \cdot(-4 a+3) \cdot(a-7) \cdot(25 a+244)
$$

