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Abstract

Given an elliptic curve E over a number field K, and a prime number `, the `-torsion
points define a representation ρE,` : Gal(K/K)→ GL2(F`). It is a well-known theorem
of Serre that this representation is surjective — and in particular irreducible — for all
but finitely many `. In this paper, we prove a theorem regarding the irreducibility
(over the algebraic closure of F`) of this representation. It follows from our theorem
that if K does not contain the class field of an imaginary quadratic field F , then for
primes ` more than a bound depending only on the field K, the representation ρE,` is
irreducible.

From this, we can deduce a generalization of the well-known theorem of Mazur that
the degree of an isogeny E → E′ of elliptic curves defined over Q of prime degree is
bounded by an absolute constant. Namely, we prove that the degrees of prime degree
isogenies of elliptic curves defined over K are bounded by a constant depending on K
if and only if K does not contain the class field of an imaginary quadratic field F , i.e.
if and only if there is no CM curve defined over K whose CM field is contained in K.

1 Introduction

Let E be an elliptic curve over a number field K, and for each prime number `, let

ρE,` : G = Gal(Q/K)→ GL(E[`]) ' GL2(Z/`Z)

be the associated Galois representation on `-torsion points. These representations reflect
many geometric properties of E, such as its primes of bad reduction and the number of
points of E over finite fields, as well as possible isogenies of E. In particular, there exists
an isogeny E → E′ of prime degree ` if and only if ρE,` is reducible over F`. In particular,
if ρE,` is irreducible (over the algebraic closure of F`), there can be no isogenies E → E′ of
prime degree `. In this paper, we study the reducibility of the representations ρE,`.

Definition 1. For the remainder of the paper, we say that the representation ρ : G →
GL2(F`) is reducible if it is reducible over the algebraic closure of F`.

Definition 2. The semi-simplification ρ̃ of a representation ρ is defined to be the direct
sum of the Jordan-Holder quotients of ρ.
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Note that When ρE,` is reducible, then its semi-simplification ρ̃E,` is abelian. The
purpose of this paper is to prove the following theorem.

Theorem 1. Let K be a number field. Then, there exists an effectively computable constant
CK depending only on K such that for any prime number ` > CK and any elliptic curve
E such that the `-torsion representation ρE,` is reducible, there exists an elliptic curve E′

over K with CM defined over K such that

ρ̃12
E,` ' ρ12

E′,`

Remark 1. If we start with the assumption that E has a degree `k cyclic isogeny then the
same analysis should give a bound on k, even when p = 2 or 3.

Remark 2. If E = E′ is CM curve with CM defined over K, then ρE,` is abelian, and hence
isomorphic to its own semi-simplification.

Corollary 1. The degrees of isogenies of elliptic curves over K are bounded if and only if
K does not contain the class field of an imaginary quadratic field F .

When ρE,` is reducible, then its semi-simplification ρ̃E,` is abelian; in particular it is
diagonalizable over F` as

ρ̃E,` =
(
ψ1 0
0 ψ2

)
where

ψi : I→ G→ F`
∗ ' Q/p`

are the two “eigencharacters” of ρ̃E,`. Here, p` is a fixed prime ideal of Q lying over `,
and I is the group if idèles of K (which surjects onto G by class field theory, since ρ̃E,`
is abelian). By the Weil pairing, the two characters satisfy ψ1ψ2 = cyc`, the cyclotomic
character defined by the extension K[ζ`].

To prove theorem 1, we study these eigencharacters: When ` is sufficiently large (more
than some constant depending only on K), we use algebraic geometry to patch together
local information about these characters, and show that up to a twist by a 12th root of
unity, these eigencharacters have a particularly simple form. Namely, for some imaginary
quadratic subfield F ⊂ K, the characters ψi are equal to NmK

F (times a 12th root of unity)
and its conjugate. In particular, the norm map Cl(K) → Cl(F ) is zero, and hence K
contains the Hilbert class field of F .

2 Action of Inertia Groups

In this section, we study the ramification of the eigencharacters ψ1 and ψ2, and explicitly
determine ψ12

i on all inertia subgroups in terms of a certain algebraic character θS . In the

2



following, we will sometimes drop the subscript from ψi and write just ψ : I→ F` to denote
either ψ1 or ψ2.

If v ∈ ΣK \ΣE is a place of good reduction for E, and πv is a uniformizer at v, then we
have a well-defined value for ψ(πv) (as ρ` is unramified), and this means that the ψi(πv)
are roots of the frobenius polynomial, i.e.

Pv(ψi(πv)) ≡ 0 mod ` where Pv(x) = x2 − TrE(v)x+ NmK
Q v

is a polynomial with integer coefficients and nonpositive discriminant.
In fact, by slightly re-defining the frobenius polynomial and twisting ψ(πv) by 12th

roots of unity, we can make sense of this for primes v of bad reduction as well. Namely,
we have the following lemma.

Lemma 1. Let v ∈ ΣK \Σ` be any prime not dividing `. Then ψ12 is unramified at v and
there exists a polynomial with integer coefficients

Pv = x2 + avx+ NmK
Q (v) ∈ Z[x]

such that

1. If v has potentially good reduction, then Pv has nonpositive discriminant.

2. If v has potentially multiplicative reduction, then Pv = (x± 1)(x±NmK
Q (v)).

3. There exists ζ ∈ F` a 12th root of unity such that Pv(ζψi(fv)) ≡ 0 mod `.

Remark 3. Note that in the above, either av = ±(Nm(v) + 1) or Pv has nonpositive
discriminant and av ≤ 2

√
Nm(v), so there are only finitely many possibilities for Pv as

(E, `) varies over all curves for which ρE,` is reducible.

Proof. Most of this proof is done in the paper [3].
First suppose v has potentially multiplicative reduction. After possibly taking a quad-

ratic extension Lw of Kv, we have (as a w-adic variety) E isomorphic to a Tate curve
L
∗
w/α

Z where α is some element of nonzero valuation. In particular, the image of the
valuation w : E[`] → Q/w(α)Z is isomorphic to Z/`Z with trivial Gv-action. As all
semisimplifications are isomorphic, either ψ1 or ψ2 becomes trivial after taking a quadratic
extension, and hence has values in ±1. The other character then has to evaluate on (any
choice of) the uniformizer πv to ± cyc`(πv) = ±NmQ(v) as v - `. This proves the statement
of the lemma in the potentially multiplicative case, with ζ = ±1. (This implies that ψ2

i ,
hence also ψ12

i are unramified at v.)
Now suppose v has potentially good reduction. Then by [3] the image of inertia Iv ⊂ G

under ρ` is either a cyclic group Φ of order 2, 3, 4, or 6, or a nonabelian group of order 8,
12 or 24 (and indeed the image under ρ` must be isomorphic for all primes ` ≥ 5, ` 6= pv.)
The last three cases are impossible when ` ≥ 5 since any nonabelian subgroup of the borel
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group B ⊂ GL2(F`) contains a copy of Z/`Z (the unipotent matrices). Hence the image
Φ must be abelian and a subgroup of Z/12Z. Thus, there exists a (non-unique) totally
ramified local extension Lw of Kv whose galois group is Φ and over which ρ1 is unramified
(this is true by local class field theory, since Galab(Kv/Kv) = K∗v

∼= O∗v⊕Z noncanonically,
and so we can extend a subgroup of O∗v to a subgroup of K∗ with the same quotient.) The
prime w has good reduction for E and NmLw

Kv
(w) = v. Since Lw/Kv has degree dividing

12, we see that ψ12
i is unramified outside of `.

Definition 3. Define Pv12 to be the quadratic polynomial whose roots are the 12th powers
of the roots of Pv.

Remark 4. Note that Pv12 is equal mod ` to the characteristic polynomial of ψ(v)12 (the
root of unity gets absorbed in the twelfth power).

The above lemma characterized the actions of the ψi on the inertia groups Gv for v - `.
We now deal with the case v | `. Let U ⊂ I be the group of units. Suppose v ∈ Σ`. Let Γ
be the set of embeddings σ : K → Q, and for a subset S ⊂ Γ define

θS =
∏
σ∈S

σ : K∗ → Q∗,

a map of algebraic groups over Q. We will often abuse notation, speaking of θS both as a
map of group schemes and as the corresponding map on their Q-points, and it should be
clear from context which is meant. Note that θ (both as a scheme and on points) factors
through the galois closure (Kgal)∗ ⊂ Q∗.

For the remainder of the paper, we fix an ideal p` ⊂ OQ extending (`) ⊂ Z. We identify
F` with OQ/p` and Q` with the completion of Q at p`. Now given a map over Q of algebraic
groups θ : K∗ → Q∗, we can give a map

θ` :
∏
v|`

Kv → Q`.

defined by the composition∏
v|`K

∗
v

'−−−−→ (K ⊗Q`)∗
θ⊗id−−−−→ (Q⊗Q`)∗

'−−−−→
∏

p|`(Q)∗p −−−−→ (Q)∗p`

'−−−−→ Q`
∗

For primes v | `, we define θv : K∗v → Q`
∗ to be the composition of θ` with K∗v ↪→

∏
v|`K

∗
v .

Lemma 2. There is a subset S ⊂ Γ such that the restriction ψ|U = (θS` · ε)−1 where ε takes
values in µ12.

Proof. The case where E is semistable is done in [2], lemma 4 of section 4.2 (in which case
we can take ε to be the trivial character). Here, we essentially reduce to this case.

4



Since we have fixed a prime ideal p` of Q extending (`) ⊂ Z, we have that S is canonically
identified with

⋃
v|` Γv, where Γv is the set of embeddings Kv ↪→ Q`. Thus, it suffices to

show that for all v | `, there is some subset Sv ⊂ Γv and some character ε : O∗Kv
→ µ12

such that
ψ(u) = (θSv

v (u) · ε(u))−1 for u ∈ O∗Kv
.

To do this, let p 6= ` be an odd prime number, and let Lw be the extension of local
fields obtained by adjoining the p-torsion points of E to Kv. Then, from [3], we know that
E is semistable over Lw. Therefore, using the result for the case where E is semistable and
taking norms, we have that for some subset Sw ⊂ Γw,

ψ(u) = (θSw
w )−1(u) for u ∈ O∗Lw

.

Now, we claim that the character θSw
w factors through taking norm down to Kv. To see

this, it suffices to examine the construction given in [2] of the the set Sw in the case where
E is semistable: Whether we take f ∈ Sw is determined by the reduction type of E at w,
and if the reduction type is supersingular, by how f : Lw ↪→ Q` embedds the unique degree
2 subfield (i.e. the unique subfield isomorphic to F`2) of the residue field of Lw into the
residue field of Q`. By [2], proposition 12d of section 1.11, if E has supersingular reduction,
then the residue field of Kv must be of even degree, since ρ̃E,` is abelian. Therefore, whether
we take f ∈ Sw depends only the restriction of f to Kv. Thus, the character θSw factors
through taking norm down to Kv. In other words, for some subset Sv ⊂ Γv, we have

ψ(u) = (θSv
v )−1(u) for u ∈ NmLw

Kv
O∗Lw

.

Now, we can finish the proof of this lemma using local class field theory. By the norm
limitation theorem, we have

NmLw
Kv
O∗Lw

= NmLab
w

Kv
O∗Lab

w

where Lab
w is the abelianization of Lw, viewed as an extension of Kv. This gives[

O∗Kv
: NmLw

Kv
O∗Kw

]
=
[
O∗Kv

: NmLab
w

Kv
O∗Lab

w

]
= e

(
Lab
w /Kv

)
≤
∣∣∣Iab
v

∣∣∣
where Iab

v is the abelianization of the inertia subgroup Iv ⊂ Gal(Lw/Kv) at v. By the
explicit description of the possible inertia subgroups Iv of p-division fields, it follows that
|Iab
v | divides 12, and hence that ψ(u) equals (θSv

v )−1(u) on an index 12 subgroup of O∗Kv
.

Therefore, taking their quotient gives a character ε : O∗Kv
→ µ12, completing the proof.

Remark 1. When the image of ρE,`k is contained in a Borel subgroup, it follows from
arguments in [2] that all primes v | ` have either potentially multiplicative or potentially
good and non-supersingular reduction. Using this, when ρE,`k is contained in a Borel
subgroup, we can extend the congruence of characters in the above lemma to hold modulo
`k as opposed to just modulo `.
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Definition 4. We will say that the set S ⊂ Γ (and the corresponding algebraic character
θ : K∗ → Q) are associated to the prime ` and the elliptic curve E.

Definition 5. For an idèle x, we define x` and xb̀ to be the idèles whose components at v
are given by

(x`)v =

{
xv if v | `
1 if v - `

and (xb̀)v =

{
1 if v | `
xv if v - `

We also use this notation when x ∈ K∗ (consider x as a principal idèle).

Corollary 1. Let x ∈ K∗ be relatively prime to `. Then, for some character ε which takes
values in µ12, we have

ψ(xb̀) ≡ θS(x) · ε(x) mod p`

We will show now that for ` suffiently large, we must have in fact

θS ∈
{

1,NmK
Q ,NmK

F ,NmK
F

}
where F is some imaginary quadratic subfield whose class field is contained in K.

3 Proof of Theorem 1

For the rest of this section, we fix K and one of the 2n possible subsets S ⊂ Γ(K). Here we
will give ineffective bounds; we will make these arguments effective in an upcoming version
of this paper.

Definition 6. We adopt the notation “` sufficiently large” to mean “` bounded by a
constant depending only on K.”

Lemma 3. For ` sufficiently large, the image θS(K)12 ⊂ Q is contained in a quadratic
subfield F ⊂ K.

Proof. Define Θ = (θS)12. Suppose the image of Θ is not contained in a single quadratic
field. Then since K∗ is an irreducible variety, there must be an element x ∈ K∗ such that
Θ(x) is not contained in any imaginary quadratic field.

By the Chebotarev density theorem, we know that generators of prime ideals are Zariski
dense in K∗. Since Θ is algebraic, we can assume that x generates a prime ideal v. But
by the Hasse bound, ψ(xb̀)12 = ψ(v)12 can assume only finitely many possible values as
E ranges over all elliptic curves, and all of these values lie in some imaginary quadratic
field. Also, by corollary 1, it follows that Θ(x) is congruent modulo p` to ψ(xb̀)12. Thus,
` must divide the norm of their difference, which is nonzero. For ` sufficiently large this is
impossible, which concludes the proof.
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Corollary 2. For ` as above, we must either have θS = 1, θS = NmK
Q , or θS = NmK

F or
its conjugate for some imaginary quadratic subfield F ⊂ K.

Proof. Since that the σ ∈ Γ are algebraically independent over Q, any element of Gal(Q/Q)
which fixes (θS)12 must fix the set S (under the evident action of Gal(Q/Q) on Γ). Thus,
the set S must be fixed by the action of Gal(Q/F ), implying the corollary.

In particular, if K has no imaginary quadratic subfields and ` is sufficiently large, we
must have θS ∈ {NmK

Q , 1}. We will show that this is also the case if K does not contain
the class field of any imaginary quadratic subfield.

Lemma 4. Suppose F ⊂ K is an imaginary quadratic subfield. Then for sufficiently large
`, we can have θS = NmK

F only if the Hilbert class field HF ⊂ K.

Proof. Assume to the contrary that HF is not contained in K. Then the composite HF ·K
is a nontrivial extension of K. Therefore, by the Chebotarev density theorem, we can find
a prime ideal v ∈ K which does not split totally in the composite HF ·K. Moreover, we
can take this prime to be of degree 1, not lie over `, and unramified in K/Q. (Since the
set of primes which do not have degree 1, which lie over `, or which are ramified in K/Q
has density zero.)

Now, the ideal vhK = (x) is principal. Therefore, for any choice of Frobenius element
fv at v, corollary 1 implies

ψ(fhK
v )12 ≡ (NmK

F x)12 mod p`

Hence ` divides the norm of their difference. By the Hasse bound and lemma 1, there are
only finitely many possibilities for the left-hand side as E ranges over all elliptic curves.
So if ` is sufficiently large, we have

ψ(fv)12hK = ψ(fhK
v )12 = (NmK

F x)12

By lemma 1, we can choose the Frobenius element fv so that ψ(fv) belongs to some
quadratic field F ′. Since v was an unramified prime of degree 1, no power of its norm down
to F can be generated by an element of Q. Thus, we conclude that the right-hand side lies
in F but not in Q. Since the left-hand side lies in the quadratic field F ′, it follows that
F = F ′. Therefore, we have an equality of ideals of F :

(ψ(fv))12hK = (NmK
F x)12 = (NmK

F v)12hK

Because the group of fractional ideals is torsion-free, this implies

(ψ(fv)) = NmK
F v

By assumption, v did not totally split in the composite HF ·K and is of degree 1; hence,
NmK

F v does not totally split in HF , and is therefore a non-principal ideal of F . However,
the left-hand side is a principal ideal, which is a contradiction.
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Thus unless K contains the Hilbert class field of an imaginary quadratic subfield, the
map θS must be either 1 or NmK

Q . Suppose θS ∈ {1,NmK
Q }. Recall that we’ve chosen

ψ = ψi for i = 1 or 2. Thus in fact we have two algebraic maps, θS1 , θS2 : K∗ → Q∗. By
the Weil pairing, we have

ψ1ψ2|U = cyc` = (NmK
Q )` ⇒ {θS1 , θS2} = {1,NmK

Q }

for ` sufficiently large. Now we prove the following lemma, as a straightforward application
of the result of Merel, [1].

Lemma 5. If ` is sufficiently large, we cannot have {θS1 , θS2} = {1,NmK
Q }.

Proof. Assume {θS1 , θS2} = {1,NmK
Q }. Fix i ∈ {1, 2} so that θSi = 1. This means

that ψi|U = ε, for some character ε : U → µ12. The kernel ker ε ⊂ U ⊂ I/K∗ defines an
extension M of K of degree dividing 12hK . By construction, the galois group Gal(Kab/M)
is killed by ε, so when we consider E as a curve over M , the character ψi is trivial. Thus,
we have a galois-invariant subspace V ⊂ E[`] such that either V is pointwise fixed by
GM = Gal(K/M), or the quotient E[`]/V is pointwise fixed by GM . In the first case, E
has an `-torsion point defined over M , and in the second case, the isogenous curve E/V
has an `-torsion point defined over M . Thus, by Merel’s theorem [1], we have

` ≤ n3n2
M

M ≤ (12nKhK)432n2
Kh

2
K

where nM ≤ 12nKhK is the degree of M . This completes the proof of this lemma.

Theorem 1. Let K be a number field. Then, there exists an effectively computable constant
CK depending only on K such that for any prime number ` > CK and any elliptic curve
E such that the `-torsion representation ρE,` is reducible, there exists an elliptic curve E′

over K with CM defined over K such that

ρ̃12
E,` ' ρ12

E′,`

Proof. By corollary 2, lemma 4, and lemma 5, for ` sufficiently large, we have{
θS1 , θS2

}
=
{

NmK
F ,NmK

F

}
for some imaginary quadratic field F such that K contains the Hilbert class field of F .
We let E′ be the CM curve defined by C/OF . By corollary 1, the 12th powers of the
eigencharacters of E and E′ agree on frobenius elements for prime ideals which are principal,
and hence by Chebotarev density agree on Gal(K/HK). Now, suppose that their 12th
powers do not agree on the frobenius element for a prime ideal w. Then, since they agree
on Gal(K/HK), it follows that they do not agree for the frobenius element at any other
prime ideal v in the same ideal class as w. Choosing v to be the smallest prime ideal
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not lying over ` which represents the given ideal class, they do not agree for the frobenius
element of a prime v of degree 1 not lying over ` and not ramified in K/Q, whose norm
is bounded independent of E. Then, the same argument as in lemma 4 implies that
(ψ(fv)) = NmK

F v, which is a contradiction.
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