On the Irreducibility of Galois Representations Associated to Elliptic Curves

Eric Larson and Dmitry Vaintrob

Abstract

Given an elliptic curve E over a number field K, and a prime number ℓ, the ℓ-torsion points define a representation $\rho_{E, \ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$. It is a well-known theorem of Serre that this representation is surjective - and in particular irreducible - for all but finitely many ℓ. In this paper, we prove a theorem regarding the irreducibility (over the algebraic closure of \mathbb{F}_{ℓ}) of this representation. It follows from our theorem that if K does not contain the class field of an imaginary quadratic field F, then for primes ℓ more than a bound depending only on the field K, the representation $\rho_{E, \ell}$ is irreducible.

From this, we can deduce a generalization of the well-known theorem of Mazur that the degree of an isogeny $E \rightarrow E^{\prime}$ of elliptic curves defined over \mathbb{Q} of prime degree is bounded by an absolute constant. Namely, we prove that the degrees of prime degree isogenies of elliptic curves defined over K are bounded by a constant depending on K if and only if K does not contain the class field of an imaginary quadratic field F, i.e. if and only if there is no CM curve defined over K whose CM field is contained in K.

1 Introduction

Let E be an elliptic curve over a number field K, and for each prime number ℓ, let

$$
\rho_{E, \ell}: G=\operatorname{Gal}(\overline{\mathbb{Q}} / K) \rightarrow \operatorname{GL}(E[\ell]) \simeq \mathrm{GL}_{2}(\mathbb{Z} / \ell \mathbb{Z})
$$

be the associated Galois representation on ℓ-torsion points. These representations reflect many geometric properties of E, such as its primes of bad reduction and the number of points of E over finite fields, as well as possible isogenies of E. In particular, there exists an isogeny $E \rightarrow E^{\prime}$ of prime degree ℓ if and only if $\rho_{E, \ell}$ is reducible over \mathbb{F}_{ℓ}. In particular, if $\rho_{E, \ell}$ is irreducible (over the algebraic closure of \mathbb{F}_{ℓ}), there can be no isogenies $E \rightarrow E^{\prime}$ of prime degree ℓ. In this paper, we study the reducibility of the representations $\rho_{E, \ell}$.

Definition 1. For the remainder of the paper, we say that the representation $\rho: G \rightarrow$ $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ is reducible if it is reducible over the algebraic closure of \mathbb{F}_{ℓ}.

Definition 2. The semi-simplification $\widetilde{\rho}$ of a representation ρ is defined to be the direct sum of the Jordan-Holder quotients of ρ.

Note that When $\rho_{E, \ell}$ is reducible, then its semi-simplification $\widetilde{\rho}_{E, \ell}$ is abelian. The purpose of this paper is to prove the following theorem.

Theorem 1. Let K be a number field. Then, there exists an effectively computable constant C_{K} depending only on K such that for any prime number $\ell>C_{K}$ and any elliptic curve E such that the ℓ-torsion representation $\rho_{E, \ell}$ is reducible, there exists an elliptic curve E^{\prime} over K with $C M$ defined over K such that

$$
\tilde{\rho}_{E, \ell}^{12} \simeq \rho_{E^{\prime}, \ell}^{12}
$$

Remark 1. If we start with the assumption that E has a degree ℓ^{k} cyclic isogeny then the same analysis should give a bound on k, even when $p=2$ or 3 .

Remark 2. If $E=E^{\prime}$ is CM curve with CM defined over K, then $\rho_{E, \ell}$ is abelian, and hence isomorphic to its own semi-simplification.

Corollary 1. The degrees of isogenies of elliptic curves over K are bounded if and only if K does not contain the class field of an imaginary quadratic field F.

When $\rho_{E, \ell}$ is reducible, then its semi-simplification $\widetilde{\rho}_{E, \ell}$ is abelian; in particular it is diagonalizable over $\overline{\mathbb{F}_{\ell}}$ as

$$
\widetilde{\rho}_{E, \ell}=\left(\begin{array}{cc}
\psi_{1} & 0 \\
0 & \psi_{2}
\end{array}\right)
$$

where

$$
\psi_{i}: \mathbb{I} \rightarrow G \rightarrow{\overline{\mathbb{F}_{\ell}}}^{*} \simeq \overline{\mathbb{Q}} / \mathfrak{p}_{\ell}
$$

are the two "eigencharacters" of $\widetilde{\rho}_{E, \ell}$. Here, \mathfrak{p}_{ℓ} is a fixed prime ideal of $\overline{\mathbb{Q}}$ lying over ℓ, and \mathbb{I} is the group if idèles of K (which surjects onto G by class field theory, since $\widetilde{\rho}_{E, \ell}$ is abelian). By the Weil pairing, the two characters satisfy $\psi_{1} \psi_{2}=\mathrm{cyc}_{\ell}$, the cyclotomic character defined by the extension $K\left[\zeta_{\ell}\right]$.

To prove theorem 1, we study these eigencharacters: When ℓ is sufficiently large (more than some constant depending only on K), we use algebraic geometry to patch together local information about these characters, and show that up to a twist by a 12 th root of unity, these eigencharacters have a particularly simple form. Namely, for some imaginary quadratic subfield $F \subset K$, the characters ψ_{i} are equal to Nm_{F}^{K} (times a 12 th root of unity) and its conjugate. In particular, the norm map $\mathrm{Cl}(K) \rightarrow \mathrm{Cl}(F)$ is zero, and hence K contains the Hilbert class field of F.

2 Action of Inertia Groups

In this section, we study the ramification of the eigencharacters ψ_{1} and ψ_{2}, and explicitly determine ψ_{i}^{12} on all inertia subgroups in terms of a certain algebraic character θ^{S}. In the
following, we will sometimes drop the subscript from ψ_{i} and write just $\psi: \mathbb{I} \rightarrow \mathbb{F}_{\ell}$ to denote either ψ_{1} or ψ_{2}.

If $v \in \Sigma_{K} \backslash \Sigma_{E}$ is a place of good reduction for E, and π_{v} is a uniformizer at v, then we have a well-defined value for $\psi\left(\pi_{v}\right)$ (as ρ_{ℓ} is unramified), and this means that the $\psi_{i}\left(\pi_{v}\right)$ are roots of the frobenius polynomial, i.e.

$$
P_{v}\left(\psi_{i}\left(\pi_{v}\right)\right) \equiv 0 \quad \bmod \ell \quad \text { where } \quad P_{v}(x)=x^{2}-\operatorname{Tr}_{E}(v) x+\operatorname{Nm}_{\mathbb{Q}}^{K} v
$$

is a polynomial with integer coefficients and nonpositive discriminant.
In fact, by slightly re-defining the frobenius polynomial and twisting $\psi\left(\pi_{v}\right)$ by $12^{\text {th }}$ roots of unity, we can make sense of this for primes v of bad reduction as well. Namely, we have the following lemma.

Lemma 1. Let $v \in \Sigma_{K} \backslash \Sigma_{\ell}$ be any prime not dividing ℓ. Then ψ^{12} is unramified at v and there exists a polynomial with integer coefficients

$$
P_{v}=x^{2}+a_{v} x+\mathrm{Nm}_{\mathbb{Q}}^{K}(v) \in \mathbb{Z}[x]
$$

such that

1. If v has potentially good reduction, then P_{v} has nonpositive discriminant.
2. If v has potentially multiplicative reduction, then $P_{v}=(x \pm 1)\left(x \pm \mathrm{Nm}_{\mathbb{Q}}^{K}(v)\right)$.
3. There exists $\zeta \in \overline{\mathbb{F}_{\ell}}$ a 12 th root of unity such that $P_{v}\left(\zeta \psi_{i}\left(f_{v}\right)\right) \equiv 0 \bmod \ell$.

Remark 3. Note that in the above, either $a_{v}= \pm(\mathrm{Nm}(v)+1)$ or P_{v} has nonpositive discriminant and $a_{v} \leq 2 \sqrt{\mathrm{Nm}(v)}$, so there are only finitely many possibilities for P_{v} as (E, ℓ) varies over all curves for which $\rho_{E, \ell}$ is reducible.

Proof. Most of this proof is done in the paper [3].
First suppose v has potentially multiplicative reduction. After possibly taking a quadratic extension L_{w} of K_{v}, we have (as a w-adic variety) E isomorphic to a Tate curve $\bar{L}_{w}^{*} / \alpha^{\mathbb{Z}}$ where α is some element of nonzero valuation. In particular, the image of the valuation $w: E[\ell] \rightarrow \mathbb{Q} / w(\alpha) \mathbb{Z}$ is isomorphic to $\mathbb{Z} / \ell \mathbb{Z}$ with trivial G_{v}-action. As all semisimplifications are isomorphic, either ψ_{1} or ψ_{2} becomes trivial after taking a quadratic extension, and hence has values in ± 1. The other character then has to evaluate on (any choice of) the uniformizer π_{v} to $\pm \operatorname{cyc}_{\ell}\left(\pi_{v}\right)= \pm \mathrm{Nm}_{\mathbb{Q}}(v)$ as $v \nmid \ell$. This proves the statement of the lemma in the potentially multiplicative case, with $\zeta= \pm 1$. (This implies that ψ_{i}^{2}, hence also ψ_{i}^{12} are unramified at v.)

Now suppose v has potentially good reduction. Then by [3] the image of inertia $I_{v} \subset G$ under ρ_{ℓ} is either a cyclic group Φ of order $2,3,4$, or 6 , or a nonabelian group of order 8 , 12 or 24 (and indeed the image under ρ_{ℓ} must be isomorphic for all primes $\ell \geq 5, \ell \neq p_{v}$.) The last three cases are impossible when $\ell \geq 5$ since any nonabelian subgroup of the borel
group $B \subset \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ contains a copy of $\mathbb{Z} / \ell \mathbb{Z}$ (the unipotent matrices). Hence the image Φ must be abelian and a subgroup of $\mathbb{Z} / 12 \mathbb{Z}$. Thus, there exists a (non-unique) totally ramified local extension L_{w} of K_{v} whose galois group is Φ and over which ρ_{1} is unramified (this is true by local class field theory, since $\mathrm{Gal}^{\mathrm{ab}}\left(\overline{K_{v}} / K_{v}\right)=K_{v}^{*} \cong \mathcal{O}_{v}^{*} \oplus \mathbb{Z}$ noncanonically, and so we can extend a subgroup of \mathcal{O}_{v}^{*} to a subgroup of K^{*} with the same quotient.) The prime w has good reduction for E and $\operatorname{Nm}_{K_{v}}^{L_{w}}(w)=v$. Since L_{w} / K_{v} has degree dividing 12 , we see that ψ_{i}^{12} is unramified outside of ℓ.

Definition 3. Define $P_{v^{12}}$ to be the quadratic polynomial whose roots are the 12th powers of the roots of P_{v}.

Remark 4. Note that $P_{v^{12}}$ is equal $\bmod \ell$ to the characteristic polynomial of $\psi(v)^{12}$ (the root of unity gets absorbed in the twelfth power).

The above lemma characterized the actions of the ψ_{i} on the inertia groups G_{v} for $v \nmid \ell$. We now deal with the case $v \mid \ell$. Let $U \subset \mathbb{I}$ be the group of units. Suppose $v \in \Sigma_{\ell}$. Let Γ be the set of embeddings $\sigma: K \rightarrow \overline{\mathbb{Q}}$, and for a subset $S \subset \Gamma$ define

$$
\theta^{S}=\prod_{\sigma \in S} \sigma: K^{*} \rightarrow \overline{\mathbb{Q}}^{*},
$$

a map of algebraic groups over \mathbb{Q}. We will often abuse notation, speaking of θ^{S} both as a map of group schemes and as the corresponding map on their \mathbb{Q}-points, and it should be clear from context which is meant. Note that θ (both as a scheme and on points) factors through the galois closure $\left(K^{\mathrm{gal}}\right)^{*} \subset \overline{\mathbb{Q}}^{*}$.

For the remainder of the paper, we fix an ideal $\mathfrak{p}_{\ell} \subset \mathcal{O}_{\overline{\mathbb{Q}}}$ extending $(\ell) \subset \mathbb{Z}$. We identify $\overline{\mathbb{F}_{\ell}}$ with $\mathcal{O}_{\overline{\mathbb{Q}}} / \mathfrak{p}_{\ell}$ and $\overline{\mathbb{Q}}$ with the completion of $\overline{\mathbb{Q}}$ at \mathfrak{p}_{ℓ}. Now given a map over \mathbb{Q} of algebraic groups $\theta: K^{*} \rightarrow \overline{\mathbb{Q}}^{*}$, we can give a map

$$
\theta_{\ell}: \prod_{v \mid \ell} K_{v} \rightarrow \overline{\mathbb{Q}_{\ell}} .
$$

defined by the composition

$$
\prod_{v \mid \ell} K_{v}^{*} \xrightarrow{\simeq}\left(K \otimes \mathbb{Q}_{\ell}\right)^{*} \xrightarrow{\theta \otimes \mathrm{id}}(\overline{\mathbb{Q}} \otimes \mathbb{Q} \ell)^{*} \xrightarrow{\simeq} \prod_{\mathfrak{p} \mid \ell}(\overline{\mathbb{Q}})_{\mathfrak{p}}^{*} \longrightarrow(\overline{\mathbb{Q}})_{\mathfrak{p}_{\ell}}^{*} \xrightarrow{\simeq} \overline{\mathbb{Q}} \ell^{*}
$$

For primes $v \mid \ell$, we define $\theta_{v}: K_{v}^{*} \rightarrow \overline{\mathbb{Q}}_{\ell}{ }^{*}$ to be the composition of θ_{ℓ} with $K_{v}^{*} \hookrightarrow \prod_{v \mid \ell} K_{v}^{*}$.
Lemma 2. There is a subset $S \subset \Gamma$ such that the restriction $\left.\psi\right|_{U}=\left(\theta_{\ell}^{S} \cdot \epsilon\right)^{-1}$ where ϵ takes values in μ_{12}.

Proof. The case where E is semistable is done in [2], lemma 4 of section 4.2 (in which case we can take ϵ to be the trivial character). Here, we essentially reduce to this case.

Since we have fixed a prime ideal \mathfrak{p}_{ℓ} of $\overline{\mathbb{Q}}$ extending $(\ell) \subset \mathbb{Z}$, we have that S is canonically identified with $\bigcup_{v \mid \ell} \Gamma_{v}$, where Γ_{v} is the set of embeddings $K_{v} \hookrightarrow \overline{\mathbb{Q} \ell}$. Thus, it suffices to show that for all $v \mid \ell$, there is some subset $S_{v} \subset \Gamma_{v}$ and some character $\epsilon: \mathcal{O}_{K_{v}}^{*} \rightarrow \mu_{12}$ such that

$$
\psi(u)=\left(\theta_{v}^{S_{v}}(u) \cdot \epsilon(u)\right)^{-1} \quad \text { for } u \in \mathcal{O}_{K_{v}}^{*} .
$$

To do this, let $p \neq \ell$ be an odd prime number, and let L_{w} be the extension of local fields obtained by adjoining the p-torsion points of E to K_{v}. Then, from [3], we know that E is semistable over L_{w}. Therefore, using the result for the case where E is semistable and taking norms, we have that for some subset $S_{w} \subset \Gamma_{w}$,

$$
\psi(u)=\left(\theta_{w}^{S_{w}}\right)^{-1}(u) \quad \text { for } u \in \mathcal{O}_{L_{w}}^{*} .
$$

Now, we claim that the character $\theta_{w}^{S_{w}}$ factors through taking norm down to K_{v}. To see this, it suffices to examine the construction given in [2] of the the set S_{w} in the case where E is semistable: Whether we take $f \in S_{w}$ is determined by the reduction type of E at w, and if the reduction type is supersingular, by how $f: L_{w} \hookrightarrow \overline{\mathbb{Q} \ell}$ embedds the unique degree 2 subfield (i.e. the unique subfield isomorphic to $\mathbb{F}_{\ell^{2}}$) of the residue field of L_{w} into the residue field of $\overline{\mathbb{Q}_{\ell}}$. By [2], proposition 12 d of section 1.11 , if E has supersingular reduction, then the residue field of K_{v} must be of even degree, since $\widetilde{\rho}_{E, \ell}$ is abelian. Therefore, whether we take $f \in S_{w}$ depends only the restriction of f to K_{v}. Thus, the character $\theta^{S_{w}}$ factors through taking norm down to K_{v}. In other words, for some subset $S_{v} \subset \Gamma_{v}$, we have

$$
\psi(u)=\left(\theta_{v}^{S_{v}}\right)^{-1}(u) \quad \text { for } u \in \operatorname{Nm}_{K_{v}}^{L_{w}} \mathcal{O}_{L_{w}}^{*} .
$$

Now, we can finish the proof of this lemma using local class field theory. By the norm limitation theorem, we have

$$
\mathrm{Nm}_{K_{v}}^{L_{w}} \mathcal{O}_{L_{w}}^{*}=\operatorname{Nm}_{K_{v}}^{L_{w}^{\mathrm{ab}}} \mathcal{O}_{L_{w}^{\mathrm{ab}}}^{*}
$$

where L_{w}^{ab} is the abelianization of L_{w}, viewed as an extension of K_{v}. This gives

$$
\left[\mathcal{O}_{K_{v}}^{*}: \mathrm{Nm}_{K_{v}}^{L_{w}} \mathcal{O}_{K_{w}}^{*}\right]=\left[\mathcal{O}_{K_{v}}^{*}: \operatorname{Nm}_{K_{v}}^{L_{w}^{\mathrm{ab}}} \mathcal{O}_{L_{w}^{\mathrm{ab}}}^{*}\right]=e\left(L_{w}^{\mathrm{ab}} / K_{v}\right) \leq\left|I_{v}^{\mathrm{ab}}\right|
$$

where I_{v}^{ab} is the abelianization of the inertia subgroup $I_{v} \subset \operatorname{Gal}\left(L_{w} / K_{v}\right)$ at v. By the explicit description of the possible inertia subgroups I_{v} of p-division fields, it follows that $\left|I_{v}^{\mathrm{ab}}\right|$ divides 12, and hence that $\psi(u)$ equals $\left(\theta_{v}^{S_{v}}\right)^{-1}(u)$ on an index 12 subgroup of $\mathcal{O}_{K_{v}}^{*}$. Therefore, taking their quotient gives a character $\epsilon: \mathcal{O}_{K_{v}}^{*} \rightarrow \mu_{12}$, completing the proof.

Remark 1. When the image of $\rho_{E, \ell^{k}}$ is contained in a Borel subgroup, it follows from arguments in [2] that all primes $v \mid \ell$ have either potentially multiplicative or potentially good and non-supersingular reduction. Using this, when $\rho_{E, \ell^{k}}$ is contained in a Borel subgroup, we can extend the congruence of characters in the above lemma to hold modulo ℓ^{k} as opposed to just modulo ℓ.

Definition 4. We will say that the set $S \subset \Gamma$ (and the corresponding algebraic character $\left.\theta: K^{*} \rightarrow \overline{\mathbb{Q}}\right)$ are associated to the prime ℓ and the elliptic curve E.

Definition 5. For an idèle x, we define x_{ℓ} and $x_{\widehat{\ell}}$ to be the idèles whose components at v are given by

$$
\left(x_{\ell}\right)_{v}=\left\{\begin{array}{ll}
x_{v} & \text { if } v \mid \ell \\
1 & \text { if } v \nmid \ell
\end{array} \quad \text { and } \quad\left(x_{\widehat{\ell}}\right)_{v}= \begin{cases}1 & \text { if } v \mid \ell \\
x_{v} & \text { if } v \nmid \ell\end{cases}\right.
$$

We also use this notation when $x \in K^{*}$ (consider x as a principal idèle).
Corollary 1. Let $x \in K^{*}$ be relatively prime to ℓ. Then, for some character ϵ which takes values in μ_{12}, we have

$$
\psi\left(x_{\widehat{\ell}}\right) \equiv \theta^{S}(x) \cdot \epsilon(x) \quad \bmod \mathfrak{p}_{\ell}
$$

We will show now that for ℓ suffiently large, we must have in fact

$$
\theta^{S} \in\left\{1, \operatorname{Nm}_{\mathbb{Q}}^{K}, \operatorname{Nm}_{F}^{K}, \overline{\operatorname{Nm}_{F}^{K}}\right\}
$$

where F is some imaginary quadratic subfield whose class field is contained in K.

3 Proof of Theorem 1

For the rest of this section, we fix K and one of the 2^{n} possible subsets $S \subset \Gamma(K)$. Here we will give ineffective bounds; we will make these arguments effective in an upcoming version of this paper.

Definition 6. We adopt the notation " ℓ sufficiently large" to mean " ℓ bounded by a constant depending only on K."

Lemma 3. For ℓ sufficiently large, the image $\theta^{S}(K)^{12} \subset \overline{\mathbb{Q}}$ is contained in a quadratic subfield $F \subset K$.

Proof. Define $\Theta=\left(\theta^{S}\right)^{12}$. Suppose the image of Θ is not contained in a single quadratic field. Then since K^{*} is an irreducible variety, there must be an element $x \in K^{*}$ such that $\Theta(x)$ is not contained in any imaginary quadratic field.

By the Chebotarev density theorem, we know that generators of prime ideals are Zariski dense in K^{*}. Since Θ is algebraic, we can assume that x generates a prime ideal v. But by the Hasse bound, $\psi\left(x_{\widehat{\ell}}\right)^{12}=\psi(v)^{12}$ can assume only finitely many possible values as E ranges over all elliptic curves, and all of these values lie in some imaginary quadratic field. Also, by corollary 1 , it follows that $\Theta(x)$ is congruent modulo \mathfrak{p}_{ℓ} to $\psi\left(x_{\overparen{\ell}}\right)^{12}$. Thus, ℓ must divide the norm of their difference, which is nonzero. For ℓ sufficiently large this is impossible, which concludes the proof.

Corollary 2. For ℓ as above, we must either have $\theta^{S}=1, \theta^{S}=\mathrm{Nm}_{\mathbb{Q}}^{K}$, or $\theta^{S}=\mathrm{Nm}_{F}^{K}$ or its conjugate for some imaginary quadratic subfield $F \subset K$.
Proof. Since that the $\sigma \in \Gamma$ are algebraically independent over \mathbb{Q}, any element of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ which fixes $\left(\theta^{S}\right)^{12}$ must fix the set S (under the evident action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on Γ). Thus, the set S must be fixed by the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / F)$, implying the corollary.

In particular, if K has no imaginary quadratic subfields and ℓ is sufficiently large, we must have $\theta^{S} \in\left\{\operatorname{Nm}_{\mathbb{Q}}^{K}, 1\right\}$. We will show that this is also the case if K does not contain the class field of any imaginary quadratic subfield.

Lemma 4. Suppose $F \subset K$ is an imaginary quadratic subfield. Then for sufficiently large ℓ, we can have $\theta^{S}=\operatorname{Nm}_{F}^{K}$ only if the Hilbert class field $H_{F} \subset K$.
Proof. Assume to the contrary that H_{F} is not contained in K. Then the composite $H_{F} \cdot K$ is a nontrivial extension of K. Therefore, by the Chebotarev density theorem, we can find a prime ideal $v \in K$ which does not split totally in the composite $H_{F} \cdot K$. Moreover, we can take this prime to be of degree 1 , not lie over ℓ, and unramified in K / \mathbb{Q}. (Since the set of primes which do not have degree 1 , which lie over ℓ, or which are ramified in K / \mathbb{Q} has density zero.)

Now, the ideal $v^{h_{K}}=(x)$ is principal. Therefore, for any choice of Frobenius element f_{v} at v, corollary 1 implies

$$
\psi\left(f_{v}^{h_{K}}\right)^{12} \equiv\left(\mathrm{Nm}_{F}^{K} x\right)^{12} \quad \bmod \mathfrak{p}_{\ell}
$$

Hence ℓ divides the norm of their difference. By the Hasse bound and lemma 1 , there are only finitely many possibilities for the left-hand side as E ranges over all elliptic curves. So if ℓ is sufficiently large, we have

$$
\psi\left(f_{v}\right)^{12 h_{K}}=\psi\left(f_{v}^{h_{K}}\right)^{12}=\left(\operatorname{Nm}_{F}^{K} x\right)^{12}
$$

By lemma 1, we can choose the Frobenius element f_{v} so that $\psi\left(f_{v}\right)$ belongs to some quadratic field F^{\prime}. Since v was an unramified prime of degree 1, no power of its norm down to F can be generated by an element of \mathbb{Q}. Thus, we conclude that the right-hand side lies in F but not in \mathbb{Q}. Since the left-hand side lies in the quadratic field F^{\prime}, it follows that $F=F^{\prime}$. Therefore, we have an equality of ideals of F :

$$
\left(\psi\left(f_{v}\right)\right)^{12 h_{K}}=\left(\operatorname{Nm}_{F}^{K} x\right)^{12}=\left(\operatorname{Nm}_{F}^{K} v\right)^{12 h_{K}}
$$

Because the group of fractional ideals is torsion-free, this implies

$$
\left(\psi\left(f_{v}\right)\right)=\operatorname{Nm}_{F}^{K} v
$$

By assumption, v did not totally split in the composite $H_{F} \cdot K$ and is of degree 1 ; hence, $\operatorname{Nm}_{F}^{K} v$ does not totally split in H_{F}, and is therefore a non-principal ideal of F. However, the left-hand side is a principal ideal, which is a contradiction.

Thus unless K contains the Hilbert class field of an imaginary quadratic subfield, the map θ^{S} must be either 1 or $\operatorname{Nm}_{\mathbb{Q}}^{K}$. Suppose $\theta^{S} \in\left\{1, \operatorname{Nm}_{\mathbb{Q}}^{K}\right\}$. Recall that we've chosen $\psi=\psi_{i}$ for $i=1$ or 2 . Thus in fact we have two algebraic maps, $\theta^{S_{1}}, \theta^{S_{2}}: K^{*} \rightarrow \overline{\mathbb{Q}}^{*}$. By the Weil pairing, we have

$$
\left.\psi_{1} \psi_{2}\right|_{U}=\operatorname{cyc}_{\ell}=\left(\mathrm{Nm}_{\mathbb{Q}}^{K}\right)_{\ell} \quad \Rightarrow \quad\left\{\theta^{S_{1}}, \theta^{S_{2}}\right\}=\left\{1, \mathrm{Nm}_{\mathbb{Q}}^{K}\right\}
$$

for ℓ sufficiently large. Now we prove the following lemma, as a straightforward application of the result of Merel, [1].

Lemma 5. If ℓ is sufficiently large, we cannot have $\left\{\theta^{S_{1}}, \theta^{S_{2}}\right\}=\left\{1, \operatorname{Nm}_{\mathbb{Q}}^{K}\right\}$.
Proof. Assume $\left\{\theta^{S_{1}}, \theta^{S_{2}}\right\}=\left\{1, \operatorname{Nm}_{\mathbb{Q}}^{K}\right\}$. Fix $i \in\{1,2\}$ so that $\theta^{S_{i}}=1$. This means that $\left.\psi_{i}\right|_{U}=\epsilon$, for some character $\epsilon: U \rightarrow \mu_{12}$. The kernel $\operatorname{ker} \epsilon \subset U \subset \mathbb{I} / K^{*}$ defines an extension M of K of degree dividing $12 h_{K}$. By construction, the galois group $\operatorname{Gal}\left(K^{\mathrm{ab}} / M\right)$ is killed by ϵ, so when we consider E as a curve over M, the character ψ_{i} is trivial. Thus, we have a galois-invariant subspace $V \subset E[\ell]$ such that either V is pointwise fixed by $G_{M}=\operatorname{Gal}(\bar{K} / M)$, or the quotient $E[\ell] / V$ is pointwise fixed by G_{M}. In the first case, E has an ℓ-torsion point defined over M, and in the second case, the isogenous curve E / V has an ℓ-torsion point defined over M. Thus, by Merel's theorem [1], we have

$$
\ell \leq n_{M}^{3 n_{M}^{2}} \leq\left(12 n_{K} h_{K}\right)^{432 n_{K}^{2} h_{K}^{2}}
$$

where $n_{M} \leq 12 n_{K} h_{K}$ is the degree of M. This completes the proof of this lemma.
Theorem 1. Let K be a number field. Then, there exists an effectively computable constant C_{K} depending only on K such that for any prime number $\ell>C_{K}$ and any elliptic curve E such that the ℓ-torsion representation $\rho_{E, \ell}$ is reducible, there exists an elliptic curve E^{\prime} over K with $C M$ defined over K such that

$$
\tilde{\rho}_{E, \ell}^{12} \simeq \rho_{E^{\prime}, \ell}^{12}
$$

Proof. By corollary 2, lemma 4, and lemma 5, for ℓ sufficiently large, we have

$$
\left\{\theta^{S_{1}}, \theta^{S_{2}}\right\}=\left\{\mathrm{Nm}_{F}^{K}, \overline{\mathrm{Nm}_{F}^{K}}\right\}
$$

for some imaginary quadratic field F such that K contains the Hilbert class field of F. We let E^{\prime} be the CM curve defined by $\mathbb{C} / \mathcal{O}_{F}$. By corollary 1 , the 12 th powers of the eigencharacters of E and E^{\prime} agree on frobenius elements for prime ideals which are principal, and hence by Chebotarev density agree on $\operatorname{Gal}\left(\bar{K} / H_{K}\right)$. Now, suppose that their 12th powers do not agree on the frobenius element for a prime ideal w. Then, since they agree on $\operatorname{Gal}\left(\bar{K} / H_{K}\right)$, it follows that they do not agree for the frobenius element at any other prime ideal v in the same ideal class as w. Choosing v to be the smallest prime ideal
not lying over ℓ which represents the given ideal class, they do not agree for the frobenius element of a prime v of degree 1 not lying over ℓ and not ramified in K / \mathbb{Q}, whose norm is bounded independent of E. Then, the same argument as in lemma 4 implies that $\left(\psi\left(f_{v}\right)\right)=\operatorname{Nm}_{F}^{K} v$, which is a contradiction.

References

[1] Merel. Bournes pour la Torsion des Courbes Elliptiques sur les Corps de Nombres. Inventionnes Mathematicae Volume 124, pp. 437-449.
[2] Serre. Propriétés Galoisiennes des Points d'Ordre Fini des Courbes Elliptiques. Inventionnes Mathematicae Volume 15, pp. 259-331.
[3] Serre and Tate. Good Reduction of Abelian Varieties. The Annals of Mathematics Volume 88, pp. 492-517.

