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In our attempt to find new elliptic curves over K = Q(
√

5), we have turned to ap-values
as a major source of information. The ap-value of a curve E at a prime p ∈ K can be
explicitly given by: ap = N(p) −#E(Fp) + 1, so it is fairly easy to compute using Sage’s
built-in point counting methods. It is also referred to as the trace of Frobenius, for in the
endomorphism ring End(E/Fp),

Frob2p + apFrobp +N(p) = 0,

where Frobp is the Frobenius map sending (x, y) 7→ (xp, yp) ∈ E/Fp.
Our method for finding an unknown curve Eun involves finding all curves in OK/(p)

which have the correct ap1 and ap2 values (for p a split prime with factorization p = p1 · p2
in K). This provides congruence conditions on the space of possible candidates for Eun

and dramatically reduces the number of curves we must search through after lifting each
of these candidates to OK .

1. Method

1.1. Curves in OK/p.
Let p be a prime above the split prime p. We know that in characteristic not 2 or 3,

we can reduce any elliptic curve to short Weierstrass form (SWF), and since we are only
considering primes p above split primes, we will never run into issues. The first step in our
method is to create a dictionary of all nonsingular SWF curves in OK/p, where the keys
are ap-values and the entries are the curves which have that ap-value. Since p is a maximal
ideal in OK , OK/p is a field of size p, so this amounts to finding all SWF curves E with
coefficients in Z/pZ:

E : y2 = x3 +Ax+B, A,B ∈ Z/pZ
Using Sage’s point-counting functionality, we can easily find the ap value for each of these
curves and thus construct our dictionary.

1.2. Curves in OK/(p).
Let p = p1 · p2 in K, and let p1 be the prime at which the dictionary method described

in 1.1 found fewer possible curves. In order to find curves in OK/(p) that have correct
values at both p1 and p2, we first lift each curve found in OK/p1 to its p2 possible images
in OK/(p) (p images for both a4 = A and a6 = B). We can then reduce each lift modulo
p2 and see if the resulting curve is in the list of possible curves in OK/p2. If so, we save
this lift as a curve over OK/(p) having the proper ap1- and ap2-values.
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1.3. Reduced Models and Lifts.
Now that we have a list of valid SWF curves in OK/(p), we may consider various reduced

models of each curve in our attempt to find Eun. Reduced models have the form:

Ered : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, where:

a1, a3 ∈ {0, 1, a, a+ 1} and
a2 ∈ {0,±1,±a,±a± 1}

By allowing a1, a2, and a3 to be non-zero, there is perhaps a better chance for a4 and a6
to be smaller than they would be in a short Weierstrass model, making it more likely that
we encounter a reduced model of Eun itself using a fairly low-bound search.

In order to find the reduced models of our curves over OK/(p), we can look at iso-
morphisms of the form τ = [r, s, t, 1] which take each curve to one of the desired form.
If E : [a1, a2, a3, a4, a6] is one of our SWF curves in OK/(p), we know that a1 = a2 =
a3 = 0. Therefore, when looking at an isomorphism of the form τ from E to a curve
E′ : [a′1, a

′
2, a
′
3, a
′
4, a
′
6] that we wish to be in reduced form, our expressions for a′1 – a′3

simplify to:

a′1 = 2s ⇒ 2s ∈ {0, 1, a, a+ 1}
a′2 = 3r − s2 ⇒ 3r − s2 ∈ {0,±1,±a,±a± 1}
a′3 = 2t ⇒ 2t ∈ {0, 1, a, a+ 1}

Since we are working in OK/(p), we can choose s, r, and t as follows (where 3−1 represents
the inverse of 3 mod p):

s ∈ {0, p+1
2 , p+1

2 a, p+1
2 (a+ 1)}

r ∈ {3−1s2, 3−1(s2 ± 1), 3−1(s2 ± a), 3−1(s2 ± a± 1)}

t ∈ {0, p+1
2 , p+1

2 a, p+1
2 (a+ 1)}

These stipulations produce 144 different isomorphisms τ = [r, s, t, 1] from E to its reduced
forms, giving us curves with a nice variety of coefficients as well. It is important to note that
we are working in OK/(p), so we must remember to reduce all coefficients modulo p. The
exception is that we still want the components (i.e. the coefficients of the basis elements 1
and a) of a2 to lie in the desired range, and reduction mod p might not accomplish this (if
a2 = −1, for example). The simple fix is that if reduction takes any component of a2 to
p− 1, we subtract p from this component.

We may now lift each of the 144 different curves from OK/(p) to OK . One possible lift of
a curve E is to take the natural image of E (i.e. leave each coefficient as it is, but consider
them as elements of OK). Additionally, we can lift by adding or subtracting multiples of
p from any component of any coefficient. Since we want our lift to be in reduced form, a1,
a2, and a3 should maintain their values under any lift, so we only alter a4 and a6. In order
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to produce a reasonably-sized yet varied collection of lifts to consider, we alter each in four
ways (for i ∈ {4, 6}):

ai 7→ ai
ai 7→ ai − p
ai 7→ ai − pa
ai 7→ ai − p(a+ 1)

We therefore get reduced models in OK with −11 ≤ a4[0], a4[1], a6[0], a6[1] < 11, where
the indices indicate which component of each coefficient is being considered. This gives
us a decent breadth of curves to search through, while still limiting the coefficients to a
reasonable range. We note that at no point in this process do we construct the curves. All
manipulations to this point are on the coefficients, so for efficiency we store the ”curves”
as tuples. Once we have our lifts in OK , we use a custom function to quickly calculate the
norm of the discriminant of each and check to see if the conductor norm of Eun divides it.
If so, we construct the curve and calculate its conductor to see if we have found Eun. As
a final check, we quickly calculate the ap-values of the found curve to make sure that they
match at all places with the ap-values of Eun.

2. Bite-Sized Algorithm to find Eun

1. Factor p = p1 · p2
2. Find all curves in OK/p1 and OK/p2 that have the correct ap1- and ap2-values
3. Lift curves from OK/p1 to OK/(p) in various ways, reduce each to OK/p2
4. If the reduction is a ”valid” curve in OK/p2, save it
5. Lift the reduced models of these saved curves to OK in various ways
6. If any of these lifts have the same conductor as Eun, quickly check against all ap-values
7. If all ap-values match, this is Eun


