## Sage Quick Reference: Abstract Algebra

## B. Balof, T. W. Judson, D. Perkinson, R. Potluri

 version 1.0, Sage Version 5.0.1latest version: http://wiki.sagemath.org/quickref
GNU Free Document License, extend for your own use Based on work by P. Jipsen, W. Stein, R. Beezer

## Basic Help

com〈tab〉 complete command
a. $\langle t a b\rangle$ all methods for object a
<command>? for summary and examples
<command>?? for complete source code
*foo*? list all commands containing foo
_ underscore gives the previous output
www.sagemath.org/doc/reference online reference www.sagemath.org/doc/tutorial online tutorial load foo.sage load commands from the file foo.sage attach foo.sage
loads changes to foo. sage automatically

## Lists

$\mathrm{L}=[2,17,3,17]$ an ordered list
L[i] the $i$ th element of L
Note: lists begin with the 0th element
L. append ( x ) adds $x$ to L
L.remove(x) removes $x$ from L

L[i:j] the $i$-th through $(j-1)$-th element of L
range (a) list of integers from 0 to $a-1$
range ( $\mathrm{a}, \mathrm{b}$ ) list of integers from $a$ to $b-1$
[a..b] list of integers from $a$ to $b$
range (a,b, c)
every $c$-th integer starting at $a$ and less than $b$
len(L) length of $L$
$M=[i \wedge 2$ for $i$ in range(13)]
list of squares of integers 0 through 12
$N=[i \wedge 2$ for $i$ in range(13) if is_prime(i)]
list of squares of prime integers between 0 and 12 $M+N$ the concatenation of lists $M$ and $N$ sorted(L) a sorted version of L (L is not changed) L.sort () sorts L (L is changed)
set(L) an unordered list of unique elements

## Programming Examples

Print the squares of the integers $0, \ldots, 14$ :
for i in range(15):
print i^2

Print the squares of those integers in $\{0, \ldots, 14\}$ that are relatively prime to 15 :
for i in range(13):
if $\operatorname{gcd}(i, 15)==1$ :
print i^2

## Preliminary Operations

a $=3 ;$ b $=14$
$\operatorname{gcd}(\mathrm{a}, \mathrm{b}) \quad$ greatest common divisor $a, b$
$\operatorname{xgcd}(a, b)$
triple $(d, s, t)$ where $d=s a+t b$ and $d=\operatorname{gcd}(a, b)$ next_prime(a) next prime after $a$ previous_prime(a) prime before $a$ prime_range( $\mathrm{a}, \mathrm{b}$ ) primes $p$ such that $a \leq p<b$ is_prime(a) is a prime?
$\mathrm{b} \%$ a the remainder of $b$ upon division by $a$ a.divides(b) does $a$ divide $b$ ?

## Group Constructions

Permutation multiplication is left-to-right.
$\mathrm{G}=$ PermutationGroup $([[(1,2,3),(4,5)],[(3,4)]])$
perm. group with generators $(1,2,3)(4,5)$ and $(3,4)$
G = PermutationGroup $(["(1,2,3)(4,5)$ ", $(3,4) "])$
alternative syntax for defining a permutation group
$\mathrm{S}=$ SymmetricGroup(4) the symmetric group, $S_{4}$
$\mathrm{A}=$ AlternatingGroup(4) alternating group, $A_{4}$
D = DihedralGroup(5) dihedral group of order 10
$\mathrm{Ab}=\operatorname{AbelianGroup}([0,2,6])$ the group $\mathbb{Z} \times \mathbb{Z}_{2} \times \mathbb{Z}_{6}$
$\mathrm{Ab} .0, \mathrm{Ab} .1, \mathrm{Ab} .2$ the generators of Ab
$a, b, c=A b$.gens ()
shorthand for $\mathrm{a}=\mathrm{Ab} .0 ; \mathrm{b}=\mathrm{Ab} .1$; $\mathrm{c}=\mathrm{Ab} .2$
C = CyclicPermutationGroup(5)
Integers (8) the group $\mathbb{Z}_{8}$
GL (3, QQ) general linear group of $3 \times 3$ matrices
$m=\operatorname{matrix}(Q Q,[[1,2],[3,4]])$
$\mathrm{n}=\operatorname{matrix}(\mathrm{QQ},[[0,1],[1,0]])$
MatrixGroup ([m,n])
the (infinite) matrix group with generators $m$ and $n$
$u=S([(1,2),(3,4)]) ; \quad v=S((2,3,4))$ elements of $S$
S.subgroup ([u,v])
the subgroup of $S$ generated by $u$ and $v$
S.quotient (A) the quotient group $\mathrm{S} / \mathrm{A}$
A.cartesian_product(D) the group A×D
A.intersection(D) the intersection of groups A and D
D.conjugate(v) the group $\mathrm{v}^{-1} \mathrm{Dv}$
S.sylow_subgroup (2) a Sylow 2-subgroup of S
D.center () the center of D
S.centralizer (u) the centralizer of $x$ in $S$
S.centralizer(D) the centralizer of D in S
S.normalizer(u) the normalizer of $x$ in $S$
S.normalizer(D) the normalizer of D in S
S.stabilizer (3) subgroup of S fixing 3

## Group Operations

S = SymmetricGroup(4); A = AlternatingGroup(4)
S.order() the number of elements of $S$
S.gens () generators of S
S.list() the elements of S
S.random_element() a random element of $S$
$u * v$ the product of elements $u$ and $v$ of $S$
$\mathrm{v}^{\wedge}(-1) * \mathrm{u}^{\wedge} 3 *$ v the element $\mathrm{v}^{-1} \mathrm{u}^{3} \mathrm{v}$ of S
u.order () the order of $u$
S.subgroups() the subgroups of S
S.normal_subgroups() the normal subgroups of S A.cayley_table() the multiplication table for A
$u$ in $S$ is $u$ an element of $S$ ?
u.word_problem(S.gens())
write $u$ as a product of the generators of $S$
A.is_abelian() is A abelian?
A.is_cyclic() is A cyclic?
A.is_simple() is A simple?
A.is_transitive() is A transitive?
A.is_subgroup(S) is A a subgroup of $S$ ?
A.is_normal(S) is A a normal subgroup of $S$ ? S.cosets (A) the right cosets of $A$ in $S$ S.cosets(A,'left') the left cosets of A in g = S.cayley_graph() Cayley graph of S
g.show3d(color_by_label=True, edge_size=0.01, vertex_size=0.03) see below:


## Ring and Field Constructions

ZZ integral domain of integers, $\mathbb{Z}$
Integers (7) ring of integers mod $7, \mathbb{Z}_{7}$
QQ field of rational numbers, $\mathbb{Q}$
RR field of real numbers, $\mathbb{R}$
CC field of complex numbers, $\mathbb{C}$
RDF real double field, inexact
CDF complex double field, inexact
RR 53-bit reals, inexact, not same as RDF
RealField(400) 400-bit reals, inexact
ComplexField(400) complexes, too
ZZ[I] the ring of Gaussian integers
QuadraticField(7) the quadratic field, $\mathbb{Q}(\sqrt{7})$
CyclotomicField(7)
smallest field containing $\mathbb{Q}$ and the zeros of $x^{7}-1$
AA, QQbar field of algebraic numbers, $\overline{\mathbb{Q}}$
FiniteField(7) the field $\mathbb{Z}_{7}$
F.<a> = FiniteField(7^3)
finite field in $a$ of size $7^{3}, \mathrm{GF}\left(7^{3}\right)$
SR ring of symbolic expressions
M. $\langle a>=Q Q[$ sqrt (3)] the field $\mathbb{Q}[\sqrt{3}]$, with $a=\sqrt{3}$.
A. <a, b>=QQ[sqrt(3), sqrt(5)]
the field $\mathbb{Q}[\sqrt{3}, \sqrt{5}]$ with $a=\sqrt{3}$ and $b=\sqrt{5}$.
$z=\operatorname{polygen}(Q Q, ' z ') ; K=N u m b e r F i e l d\left(x^{\wedge} 2-2, ' s '\right)$
the number field in $s$ with defining polynomial $x^{2}-2$
$\mathrm{s}=\mathrm{K} .0$ set s equal to the generator of K
D = ZZ[sqrt(3)]
D.fraction_field()
field of fractions for the integral domain $D$

## Ring Operations

Note: Operations may depend on the ring
$\mathrm{A}=\mathrm{ZZ}[\mathrm{I}] ; \mathrm{D}=\mathrm{ZZ}[$ sqrt(3)] some rings
A.is_ring() is $A$ a ring?
A.is_field() is $A$ a field?
A.is_commutative() is $A$ commutative?
A.is_integral_domain()

True is $A$ an integral domain?
A.is_finite() is $A$ is finite?
A.is_subring(D) is $A$ a subring of $D$ ?
A.order () the number of elements of $A$
A.characteristic() the characteristic of $A$
A.zero() the additive identity of $A$
A.one() the multiplicative identity of $A$
A.is_exact()

False if A uses a floating point representation
$a, b=D . g e n s() ; r=a+b$
$r$.parent () the parent ring of $r$ (in this case, D)
r.is_unit() is $r$ a unit?

## Polynomials

$\mathrm{R} .\langle\mathrm{x}\rangle=\mathrm{ZZ}[] \quad \mathrm{R}$ is the polynomial ring $\mathbb{Z}[x]$
$R .\langle x\rangle=Q Q[$ ]; $R=$ PolynomialRing(QQ,'x'); $R=Q Q[' x ']$
R is the polynomial ring $\mathbb{Q}[x]$
$\mathrm{S} .\langle\mathrm{z}\rangle=\operatorname{Integers}(8)[] \quad \mathrm{S}$ is the polynomial ring $\mathbb{Z}_{8}[z]$
$\mathrm{S} .\langle\mathrm{s}, \mathrm{t}>=\mathrm{QQ}[] \quad \mathrm{S}$ is the polynomial ring $\mathbb{Q}[s, t]$
$\mathrm{p}=4 * \mathrm{x}^{\wedge} 3+8 * \mathrm{x}^{\wedge} 2-20 * \mathrm{x}-24$
a polynomial in $\mathrm{R}(=\mathbb{Q}[x])$
p.is_irreducible() is $p$ irreducible over $\mathbb{Q}[x]$ ?
$\mathrm{q}=\mathrm{p} . \mathrm{factor}()$ factor $p$
q.expand() expand q
p. subs ( $\mathrm{x}=3$ ) evaluates $p$ at $x=3$
R.ideal (p) the ideal in $R$ generated by $p$
R.cyclotomic_polynomial (7)
the cyclotomic polynomial $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$
$q=x^{\wedge} 2-1$
p.divides(q) does $p$ divide $q$ ?
p.quo_rem(q)
the quotient and remainder of p upon division by q
$\operatorname{gcd}(\mathrm{p}, \mathrm{q}) \quad$ the greatest common divisor of $p$ and $q$
p.xgcd(q) the extended gcd of $p$ and $q$

I = S.ideal([s*t+2,s^3-t^2])
the ideal $\left(s t+2, s^{3}-t^{2}\right)$ in $\left.S(=\mathbb{Q}[s, t])\right)$
S.quotient(I) the quotient ring, $S / I$

## Field Operations

A. <a, b>=QQ[sqrt (3) , sqrt (5)]
C. <c> = A.absolute_field()
"flattens" a relative field extension
A.relative_degree()
the degree of the relative extension field
A.absolute_degree()
the degree of the absolute extension
$\mathrm{r}=\mathrm{a}+\mathrm{b}$; r.minpoly()
the minimal polynomial of the field element $r$
C.is_galois() is C a Galois extension of $Q$ ?

