MODULO ONE UNIFORM DISTRIBUTION OF CERTAIN FIBONACCI-RELATED SEQUENCES

J. L. BROWN, JR.
 and
 R. L. DUNCAN

The Pennsylvania State University, University Park, Pennsylvania
Let $\left\{x_{j}\right\}_{1}^{\infty}$ be a sequence of real numbers with corresponding frac-
tional parts $\left\{\beta_{j}\right\}_{1}^{\infty}$, where $\beta_{j}=x_{j}-\left[x_{j}\right]$ and the bracket denotes the greatest integer function. For each $n \geq 1$, we define the function F_{n} on $[0,1]$ so that $F_{n}(x)$ is the number of those terms among $\beta_{1}, \cdots, \beta_{n}$ which lie in the interval $[0, x)$, divided by n_{0} Then $\left\{x_{j}\right\}_{1}^{\infty}$ is said to be uniformly distributed modulo one iff $\lim _{n \rightarrow \infty} F_{n}(x)=x$ for all $x \in[0,1]$.

In other words, each interval of the form $[0, x)$ with $x \in[0,1]$, contains asymptotically a proportion of the $\beta_{n}{ }^{\text {'s }}$ equal to the length of the interval , and clearly the same will be true for any sub-interval (α, β) of $[0,1]$. The classical Weyl criterion $\left[1\right.$, p. 76] states that $\left\{x_{j}\right\}_{1}^{\infty}$ is uniformly distributed mod 1 iff

$$
\begin{equation*}
\lim _{\mathrm{l} \rightarrow \infty} \frac{1}{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{e}^{2 \pi \mathrm{i} \nu \mathrm{x}_{\mathrm{j}}}=0 \text { for all } \nu \geq 1 \tag{1}
\end{equation*}
$$

An example of a sequence which is uniformly distributed $\bmod 1$ is $\{n \xi\}_{n=0}^{\infty}$, where ξ is an arbitrary irrational number. (See [1, p. 81] for a proof using Weyl's criterion.)

The purpose of this paper is to show that the sequence $\left\{\ln F_{n}\right\}_{1}^{\infty}$ and $\left\{\ln \mathrm{L}_{\mathrm{n}}\right\}_{1}^{\infty}$ are uniformly distributed mod 1. More generally, we show that if $\left\{V_{n}\right\}_{1}^{\mathrm{n}} \stackrel{1}{\text { s. }}$ satisfies the Fibonacci recurrence

$$
v_{n+2}=v_{n+1}+v_{n}
$$

for $\mathrm{n} \geq 1$ with $\mathrm{V}_{1}=\mathrm{K}_{1}>0$ and $\mathrm{V}_{2}=\mathrm{K}_{2}>0$ as initial values, then $\left\{\ln V_{n}\right\}_{1}^{\infty}$ is uniformly distributed mod 1 . Toward this end, the following two lemmas are helpful.
[Apr.
Lemma 1. If $\left\{x_{j}\right\}_{1}^{\infty}$ is uniformly distributed $\bmod 1$ and $\left\{y_{j}\right\}_{1}^{\infty}$ is a sequence such that

$$
\lim _{j \rightarrow \infty}\left(x_{j}-y_{j}\right)=0
$$

then $\left\{y_{j}\right\}_{1}^{\infty}$ is uniformly distributed mod 1.
Proof. From the hypothesis and the continuity of the exponential function, it follows that

$$
\lim _{j \rightarrow \infty}\left(e^{2 \pi i \nu x_{j}}-e^{2 \pi i \nu y_{j}}\right)=0
$$

But it is well known [2, Theorem B, p. 202], that if $\left\{\gamma_{n}\right\}$ is a sequence of real numbers converging to a finite limit L, then

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}} \sum_{1}^{\mathrm{n}} \gamma_{\mathrm{j}}=\mathrm{L}
$$

Taking

$$
\gamma_{\mathrm{j}}=\mathrm{e}^{2 \pi \mathrm{i} \nu \mathrm{x}_{\mathrm{j}}}-\mathrm{e}^{2 \pi \mathrm{i} \nu \mathrm{y}_{\mathrm{j}}}
$$

we have

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}} \sum_{1}^{\mathrm{n}}\left(\mathrm{e}^{2 \pi \mathrm{i} \nu \mathrm{x}_{\mathrm{j}}}-\mathrm{e}^{2 \pi \mathrm{i} \nu \mathrm{y}_{\mathrm{j}}}\right)=0
$$

Since

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{1}^{n} e^{2 \pi i \nu x_{j}}=0
$$

by Weyl's criterion, we also have

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}} \sum_{1}^{\mathrm{n}} \mathrm{e}^{2 \pi \mathrm{i} \nu y_{j}}=0
$$

and the sufficiency of Weyl's criterion proves the sequence $\left\{y_{j}\right\}_{1}^{\infty}$ to be uniformly distributed mod 1.

Lemma 2. If α is an algebraic number, then $\ln \alpha$ is irrational.
Proof. Assume, to the contrary, that $\ln \alpha=p / q$, where p and q are non-zero integers. Then $e^{p / q}=\alpha$, so that $e^{p}=\alpha^{q}$. But α^{q} is algebraic, since the algebraic numbers are closed under multiplication [1, p. 84]. Thus. e^{p} is algebraic, in turn implying e is algebraic. But e is known to be transcendental [1, p. 25] so that a contradiction is obtained.

Theorem. Let $\left\{V_{n}\right\}_{1}^{\infty}$ be a sequence generated by the recursion formula

$$
v_{n+2}=v_{n+1}+v_{n}
$$

for $n \geq 1$ given that $V_{1}=K_{1}>0$ and $V_{2}=K_{2}>0$. Then the sequence $\left\{\ln \mathrm{V}_{\mathrm{n}}\right\}_{1}^{\infty}$ is uniformly distributed modulo one.

Proof. The recursion (difference equation) has general solution

$$
V_{n}=C_{1} \alpha^{n}+C_{2} \beta^{n}
$$

where α, β are the roots of the equation $x^{2}-x-1=0$ and C_{1}, C_{2} are constants determined by the initial conditions. Thus

$$
\alpha=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \beta=\frac{1-\sqrt{5}}{2},
$$

while $\mathrm{C}_{1} \alpha+\mathrm{C}_{2} \beta=\mathrm{K}_{1}$ and $\mathrm{C}_{1} \alpha^{2}+\mathrm{C}_{2} \beta^{2}=\mathrm{K}_{2}$. Now,

$$
\left|\mathrm{v}_{\mathrm{n}}-\mathrm{C}_{1} \alpha^{\mathrm{n}}\right|=\left|\mathrm{C}_{2} \beta^{\mathrm{n}}\right|
$$

for $\mathrm{n} \geq 1$, so that, noting $|\beta|<1$, we have

$$
\lim _{n \rightarrow \infty}\left|V_{n}-C_{1} \alpha^{n}\right|=0
$$

Moreover, from the fact that $\left\{\mathrm{V}_{\mathrm{n}}\right\}_{1}^{\infty}$ is an increasing positive sequence,

$$
\left|1-\frac{\mathrm{C}_{1} \alpha^{n}}{\mathrm{~V}_{\mathrm{n}}}\right|=\left|\frac{\mathrm{V}_{\mathrm{n}}-\mathrm{C}_{1} \alpha^{\mathrm{n}}}{\mathrm{~V}_{\mathrm{n}}}\right| \leq \frac{1}{\mathrm{~K}_{1}}\left|\mathrm{~V}_{\mathrm{n}}-\mathrm{C}_{1} \alpha^{\mathrm{n}}\right|
$$

so that

$$
\lim _{n \rightarrow \infty} \frac{C_{1} \alpha^{n}}{V_{n}}=1
$$

Thus,

$$
\lim _{n \rightarrow \infty} \ln \left(\frac{C_{1} \alpha^{n}}{V_{n}}\right)=0
$$

or equivalently,
(2)

$$
\lim _{n \rightarrow \infty}\left[\ln \left(C_{1} \alpha^{n}\right)-\ln V_{n}\right]=0
$$

Since α is algebraic $\left(\alpha^{2}=\alpha+1\right)$, it follows from Lemma 2 that $\ln \alpha$ is irrational and consequently [1, p. 84] that

$$
\{\mathrm{n} \ln \alpha\}_{1}^{\infty}=\left\{\ln \left(\alpha^{\mathrm{n}}\right)\right\}_{1}^{\infty}
$$

is uniformly distributed mod 1. Then

$$
\left\{\ln \left(\mathrm{C}_{1} \alpha^{\mathrm{n}}\right)\right\}_{1}^{\infty}
$$

[Continued on page 294.]

