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Motivating example

The congruent Zeta function

I X/Fq - algebraic variety over finite field of q = pf elements.

I Ns(X ) = #X (Fqs ) - number of Fqs -rational points on X .

I The Zeta function of X is

Zeta(X/Fq,T ) := exp

( ∞∑
s=1

Ns(X )
T s

s

)
∈ Q[[t]]

Theorem (Dwork ’60)

Zeta(X/Fq,T ) is a rational function of T .
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Motivating example

Weil conjectures (for hypersurfaces)

X smooth, projective hypersurface in Pn, we have:

Theorem (Deligne ’73)

I Zeta(X/Fq,T ) =
P(T )±1

(1− T )(1− qT )(1− q2T ) · · · (1− qn−1T )
where degP(T ) = bn−1 = dimHn−1

dR (X ) = Betti number.

I If α reciprocal root of P(T ), then so is qn−1/α.

I If α reciprocal root then |α| = q(n−1)/2. (Riemann
hypothesis).
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The Legendre family

Eλ : y2 = x(x − 1)(x − λ)

I Zeta(Eλ/Fp,T ) =
1− aλ,pT + pT 2

(1− T )(1− pT )
I NFp(λ) = 1− aλ,p + p

I So aλ,p ≡ 1− NFp(λ) mod p

I If p large enough (not 2 or 3) NFp(λ) mod p is all we need to
know aλ,p.
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The Legendre family

Theorem (Igusa ’58)

NFp(λ) ≡ (−1)
p−1

2

[
2F1

(
1

2
,

1

2
; 1

∣∣∣∣λ)] p−1
2

0

mod p.

NOTE: We also know that 2F1( 1
2 ,

1
2 ; 1|λ) is the only holomorphic

solution around 0 of the Picard-Fuchs differential equation satisfied
by the periods of Eλ.
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Monomial deformations of diagonal hypersurfaces
A “new” approach

Gauss sums

I Let χ1/(q−1) : F∗q → K ∗ be a fixed generator of the character
group of F∗q where K is C or Cp.

I For s ∈ 1
q−1Z/Z we let χs =

(
χ1/(q−1)

)s(q−1)
, and for any s

set χs(0) = 0.

I Let ψ : Fq → K ∗ be a (fixed) additive character.

I For s ∈ 1
(q−1)Z/Z we let g(s) denote the Gauss sum

g(s) =
∑
x∈Fq

χs(x)ψ(x)
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Monomial deformations of diagonal hypersurfaces
A “new” approach

A family with a large group action

Let
Xλ : xd1 + · · ·+ xdn − dλxh1

1 · · · x
hn
n = 0

where each hi is a positive integer,
∑

hi = d and
gcd(d , h1, . . . , hn) = 1.

I Let µnd be the group of n-tuples of d-th roots of unity in F∗q.

I Let ∆ be the diagonal elements of µnd , i.e. elements of the
form (ξ, · · · , ξ).

The varieties Xλ allow a faithful action of the group

G = {ξ ∈ µnd |ξh = 1}/∆,

by ξ = (ξ1, . . . , ξn) taking the point (x1, . . . , xn) to
(ξ1x1, . . . , ξnxn).
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Monomial deformations of diagonal hypersurfaces
A “new” approach

A large group action

char(G )↔W ,

where

W = {(w1, . . . ,wn)|0 ≤ wi < d ,
∑

wi ≡ 0 mod d},

and w ′ ∼ w if w − w ′ is a multiple (mod d) of h.
Here

χw (ξ) := χ(ξw ), ξw = ξw1
1 · · · ξ

wn
n

and χ is a fixed primitive character of µd , which we can get for
example by restricting χ1/(q−1) to µd .
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Monomial deformations of diagonal hypersurfaces
A “new” approach

Koblitz’s result

Assume d |q − 1.

Theorem (Koblitz)

NFq(λ) = NFq(0) +
1

q − 1

∑
s∈ d

q−1
Z/Z

w∈W

g

(
w + sh

d

)
g(s)

χs(dλ),

where we denote g

(
w + sh

d

)
=
∏

i g

(
wi + shi

d

)
.

Adriana Salerno Counting points over finite fields



Outline
Zeta functions

Counting points using Gauss sums and Jacobi sums
Application: arithmetic mirror symmetry

Computational considerations (Henri Cohen)
Sage days ideas

Monomial deformations of diagonal hypersurfaces
A “new” approach

The Gross-Koblitz formula

Fix our attention on Fp-points on our varieties.

Suppose we want to find a way to compute NFp(λ) mod p. We use

Theorem (Gross-Koblitz)

For s ∈ 1
p−1Z/Z, we have

g(s) = −(−p)sΓp(s).

Here, Γp is the p-adic analog of the Gamma function.
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Monomial deformations of diagonal hypersurfaces
A “new” approach

The 0-dimensional family

Study NFp(λ) mod p for the family

Zλ : xd1 + xd2 − dλx1x
d−1
2 = 0.

Assume p is a prime such that d |p − 1. We use the following:

Formula (S)

NFp (λ) = NFp (0) +
−1

p − 1

p−2∑
a=0

(−p)η(a)Γp

(
a

p − 1

)
Γp

({
(d − 1)a

p − 1

})
Γp

({
da

p − 1

}) ω(dλ)−da

where η(a) =
(

a
p−1

+ { (d−1)a
p−1

} − { da
p−1
}
)

.

Notation

I ω : F∗p → C∗p - Teichmüller character. (ω(x) ≡ x mod p)

I {x} = x − [x], fractional part of x .
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Monomial deformations of diagonal hypersurfaces
A “new” approach

The 0-dimensional family

Theorem (S)

Let α(0) = ( 1
d , . . . ,

d−1
d ), β(0) = ( 1

d−1 , . . . ,
d−2
d−1 ).

NFp(λ)− NFp(0)

≡
d−2∑
i=0

[
dFd−1(α(i);β(i)|(d − 1)−(d−1)λ−d)

] (i+1)(p−1)
d

−1

i(p−1)
d−1

mod p,

where α(i) =
(

1
d + 1, . . . , i

d + 1, i+1
d , . . . , d−1

d

)
, and

β(i) =
(

1
d−1 + 1, . . . , i

d−1 + 1, i+1
d−1 , . . . ,

d−2
d−1

)
.

[u(z)]ji denotes the polynomial which is the truncation of a series
u(z) from n = i to j .
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Monomial deformations of diagonal hypersurfaces
A “new” approach

The 0-dimensional family

So for example in the case d = 3 we get that

NFp(λ)− NFp(0) ≡
[

2F1

(
1

3
,

2

3
;

1

2

∣∣∣∣ 1

22λ3

)] p−1
3
−1

0

+

[
2F1

(
4

3
,

2

3
;

3

2

∣∣∣∣ 1

22λ3

)] 2(p−1)
3
−1

p−1
2

mod p.
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Monomial deformations of diagonal hypersurfaces
A “new” approach

The Dwork family of K3’s

Xλ : x4
1 + x4

2 + x4
3 + x4

4 − 4λx1x2x3x4 = 0.

The set W is made up of 64 vectors, but we can split them up into
16 equivalence classes, and of those there are only three “types”.
These are

(0, 0, 0, 0), (1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3)

(0, 1, 1, 2), (1, 2, 2, 3), (2, 3, 3, 0), (3, 0, 0, 1)

(0, 0, 2, 2), (1, 1, 3, 3), (2, 2, 0, 0), (3, 3, 1, 1)

The rest are permutations of these. So there is one class of the first
type, 12 classes of the second type, and 3 classes of the third type.
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Monomial deformations of diagonal hypersurfaces
A “new” approach

The Dwork family of K3’s

NFp(λ)− NFp(0) =
1

p − 1

∑
s∈ 1

p−1
Z/Z

g(s)4

g(4s)
χ4s(4λ) (S1)

+
12

p − 1

∑
s∈ 1

p−1
Z/Z

g(s)g(s + 1
4 )2g(s + 1

2 )

g(4s)
χ4s(4λ) (S2)

+
3

p − 1

∑
s∈ 1

p−1
Z/Z

g(s)2g(s + 1
2 )2

g(4s)
χ4s(4λ). (S3)
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Monomial deformations of diagonal hypersurfaces
A “new” approach

The Dwork family of K3’s

Using Gross-Koblitz and taking mod p leaves only (S1), so

NFp(λ)− NFp(0) ≡
[

3F2

(
1

4
,

1

2
,

3

4
; 1, 1

∣∣∣∣λ−4

)] p−1
4
−1

0

mod p
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Monomial deformations of diagonal hypersurfaces
A “new” approach

The Dwork family of K3’s

Xenia de la Ossa and Shabnam Kadir:

Zeta(X/Fp,T ) =
1

(1− T )(1− pT )(1− p2T )P(T )

P(T ) = R(0,0,0,0)(T )R3
(0,0,2,2)(T )R12

(0,1,1,2)(T )

where

I R(0,0,0,0)(T ) = (1± pT )(1− aT + p2T )

I R(0,0,2,2)(T ) = (1± pT )(1± pT )

I R(0,1,1,2)(T ) ={
[(1− pT )(1 + pT )]1/2 when p ≡ 3 mod 4

(1± pT ) otherwise
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Monomial deformations of diagonal hypersurfaces
A “new” approach

Let N(α) be the number of Fq-points on the projective
hypersurface defined by

α1x
h

(1)
1

1 · · · xh
(1)
n

n + · · ·+ αrx
h

(r)
1

1 · · · xh
(r)
n

n = 0,

where α is an r - tuple of nonzero elements of Fq, and q 6 |h(j)
i .

We abbreviate this as
∑r

i=1 αix
h(i)

.
Let N∗(α) denote the number of points with all coordinates
nonzero on the hypersurface.
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Monomial deformations of diagonal hypersurfaces
A “new” approach

Theorem (Delsarte ’51, Furtado Gomida ’51)

N∗(α) =
∑
w

χ−1
w (α)cχw ,

where the summation is over all w ∈ (Z/(q − 1)Z)r ,∑
wi ≡ 0 mod q, which index the characters of µrq−1/∆, for which∑

i

h
(i)
j wi ≡ 0 mod q for all j = 1, . . . , n;

and for such w, cχw = − 1
q (q − 1)n−rJ

(
w1
q−1 , . . . ,

wr
q−1

)
, unless

w = (0, . . . , 0), in which case cχ0 = (q − 1)n−r (q−1)r−1−(−1)r−1

q .
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Monomial deformations of diagonal hypersurfaces
A “new” approach

In terms of Gauss sums the expression for the coefficients becomes

cχw = (q − 1)n−rχwr (−1)
g
(

w1
q−1

)
· · · g

(
wr−1

q−1

)
g
(

w1
q−1 + · · ·+ wr−1

q−1

) .
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Monomial deformations of diagonal hypersurfaces
A “new” approach

The Klein-Mukai pencil

Let

Xψ : x3
1x2 + x3

2x3 + x3
3x1 + x4

4 − 4ψx1x2x3x4 = 0.

Delsarte gives us a way to compute N∗(1, 1, 1, 1,−4ψ) in terms of
Gauss sums. In fact, same formula works to find the number of
points with some zero coordinates (just count points on a different
variety!).
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Monomial deformations of diagonal hypersurfaces
A “new” approach

The Klein-Mukai pencil

If 7 6 |q − 1:

N∗(ψ) =
1

q − 1

q3 − 4q3 + 6q − 4−
q−2∑
k=1

g
(

k
q−1

)4

g
(

4k
q−1

) χ4k(4ψ)

 .
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Monomial deformations of diagonal hypersurfaces
A “new” approach

The Klein-Mukai pencil

Considering only over Fp and using the Gross-Koblitz formula we
get:

N(ψ) = 4p − 2 +
1

p − 1

p3 − 4p2 + 6p − 4−
p−2∑
r=1

Γp(r/(p − 1))4

Γp({4r/(p − 1)})
(−p)(4r/(p−1)−{4r/(p−1)})

ω(4l)r



Which modulo p is exactly the same hypergeometric function we
obtained for the Dwork family K3. That is

N(ψ)− 2 ≡
[

3F2

(
1

4
,

1

2
,

3

4
; 1, 1

∣∣∣∣λ−4

)] p−1
4 −1

0

mod p
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Monomial deformations of diagonal hypersurfaces
A “new” approach

The Klein-Mukai quartic

If 7|q − 1:

N∗(ψ) =
1

q − 1

[
q3 − 4q3 + 6q − 4− 1

q

6∑
i=1

J

(
k

7
,

2k

7
,

4k

7

)

−
q−2∑
k=1

g
(

k
q−1

)4

g
(

4k
q−1

) χ4k(4ψ)

− 3

q − 1

q−2∑
k=1

g
(

k
q−1

)
g
(

k
q−1 + 1

7

)
g
(

k
q−1 + 2

7

)
g
(

k
q−1 + 4

7

)
g
(

4k
q−1

) χ4k(4ψ)

− 3

q − 1

q−2∑
k=1

g
(

k
q−1

)
g
(

k
q−1 + 3

7

)
g
(

k
q−1 + 5

7

)
g
(

k
q−1 + 6

7

)
g
(

4k
q−1

) χ4k(4ψ)Adriana Salerno Counting points over finite fields
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Zeta function of the mirror

de la Ossa:

Zeta(Y /Fp,T ) =
1

(1− T )(1− pT )19(1− p2T )R(0,0,0,0)(T )

Conjecture: Factor corresponding to invariant period appears in
mirror zeta function and alternate pencils.
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Sage days ideas

We have a formula involving Jacobi sums. How can we compute
these?

1. Compute directly - By properties of Jacobi sums, an order r
Jacobi sum can be expressed as a product of r − 1 Jacobi
sums of order 2. The total cost of the computation is of the
order O((r − 1)q2).

2. Can gain a factor of (r − 1) by fixing a generator of the
multiplicative character group.

3. Louboutin - if p = q (the largest part of the computation),
Gauss sums are linked to the root numbers of θ-functions
associated to the characters. Cost is O(q3/2+ε).

4. Use p-adic Gamma function. Cost is about O(p1+ε), no more
efficiend than theta functions a priori.
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The main interest is we only need to compute values modulo p or
p2, since we know the number of points is an integer and we have
the Weil-Deligne bounds. Although this is a O(q2) method, it is
the best available when p = q2, and even when p = q, since we
can work mod p and the implicit constant of O() is very small, it is
quite competitive in practice (p ≤ 104 for instance).
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Things we can compute

I Basic: Convert Pari code to Sage code.

I Count points on hypersurfaces in P1 × P1 × P1.

I Count points on the mirror hypersurfaces.
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