Counting points over finite fields

Adriana Salerno

Bates College

July 10, 2013

Zeta functions
Motivating example
Counting points using Gauss sums and Jacobi sums Monomial deformations of diagonal hypersurfaces A "new" approach

Application: arithmetic mirror symmetry
Computational considerations (Henri Cohen)
Sage days ideas

The congruent Zeta function

- X / \mathbb{F}_{q} - algebraic variety over finite field of $q=p^{f}$ elements.

The congruent Zeta function

- X / \mathbb{F}_{q} - algebraic variety over finite field of $q=p^{f}$ elements.
- $N_{s}(X)=\# X\left(\mathbb{F}_{q^{s}}\right)$ - number of $\mathbb{F}_{q^{s}}$ rational points on X.

The congruent Zeta function

- X / \mathbb{F}_{q} - algebraic variety over finite field of $q=p^{f}$ elements.
- $N_{s}(X)=\# X\left(\mathbb{F}_{q^{s}}\right)$ - number of $\mathbb{F}_{q^{s}}$ rational points on X.
- The Zeta function of X is

$$
\operatorname{Zeta}\left(X / \mathbb{F}_{q}, T\right):=\exp \left(\sum_{s=1}^{\infty} N_{s}(X) \frac{T^{s}}{s}\right) \in \mathbb{Q}[[t]]
$$

The congruent Zeta function

- X / \mathbb{F}_{q} - algebraic variety over finite field of $q=p^{f}$ elements.
- $N_{s}(X)=\# X\left(\mathbb{F}_{q^{s}}\right)$ - number of $\mathbb{F}_{q^{s}}$ rational points on X.
- The Zeta function of X is

$$
\operatorname{Zeta}\left(X / \mathbb{F}_{q}, T\right):=\exp \left(\sum_{s=1}^{\infty} N_{s}(X) \frac{T^{s}}{s}\right) \in \mathbb{Q}[[t]]
$$

Theorem (Dwork '60)
$\operatorname{Zeta}\left(X / \mathbb{F}_{q}, T\right)$ is a rational function of T.

Weil conjectures (for hypersurfaces)

X smooth, projective hypersurface in \mathbb{P}^{n}, we have:

Weil conjectures (for hypersurfaces)

X smooth, projective hypersurface in \mathbb{P}^{n}, we have:
Theorem (Deligne '73)

Weil conjectures (for hypersurfaces)

X smooth, projective hypersurface in \mathbb{P}^{n}, we have:
Theorem (Deligne '73)

- $\operatorname{Zeta}\left(X / \mathbb{F}_{q}, T\right)=$

$$
\begin{aligned}
& \frac{P(T)^{ \pm 1}}{(1-T)(1-q T)\left(1-q^{2} T\right) \cdots\left(1-q^{n-1} T\right)} \\
& \text { where } \operatorname{deg} P(T)=b_{n-1}=\operatorname{dim} H_{d R}^{n-1}(X)=\text { Betti number. }
\end{aligned}
$$

Weil conjectures (for hypersurfaces)

X smooth, projective hypersurface in \mathbb{P}^{n}, we have:
Theorem (Deligne '73)

- $\operatorname{Zeta}\left(X / \mathbb{F}_{q}, T\right)=$

$$
\begin{aligned}
& \frac{P(T)^{ \pm 1}}{(1-T)(1-q T)\left(1-q^{2} T\right) \cdots\left(1-q^{n-1} T\right)} \\
& \text { where } \operatorname{deg} P(T)=b_{n-1}=\operatorname{dim} H_{d R}^{n-1}(X)=\text { Betti number. }
\end{aligned}
$$

- If α reciprocal root of $P(T)$, then so is q^{n-1} / α.

Weil conjectures (for hypersurfaces)

X smooth, projective hypersurface in \mathbb{P}^{n}, we have:
Theorem (Deligne '73)

- $\operatorname{Zeta}\left(X / \mathbb{F}_{q}, T\right)=$

$$
\begin{aligned}
& \frac{P(T)^{ \pm 1}}{(1-T)(1-q T)\left(1-q^{2} T\right) \cdots\left(1-q^{n-1} T\right)} \\
& \text { where } \operatorname{deg} P(T)=b_{n-1}=\operatorname{dim} H_{d R}^{n-1}(X)=\text { Betti number. }
\end{aligned}
$$

- If α reciprocal root of $P(T)$, then so is q^{n-1} / α.
- If α reciprocal root then $|\alpha|=q^{(n-1) / 2}$. (Riemann hypothesis).

The Legendre family

$$
E_{\lambda}: y^{2}=x(x-1)(x-\lambda)
$$

Adriana Salerno

The Legendre family

$$
\begin{aligned}
& E_{\lambda}: y^{2}=x(x-1)(x-\lambda) \\
& \operatorname{Zeta}\left(E_{\lambda} / \mathbb{F}_{p}, T\right)=\frac{1-a_{\lambda, p} T+p T^{2}}{(1-T)(1-p T)}
\end{aligned}
$$

The Legendre family

$$
E_{\lambda}: y^{2}=x(x-1)(x-\lambda)
$$

$-\operatorname{Zeta}\left(E_{\lambda} / \mathbb{F}_{p}, T\right)=\frac{1-a_{\lambda, p} T+p T^{2}}{(1-T)(1-p T)}$

- $N_{\mathbb{F}_{p}}(\lambda)=1-a_{\lambda, p}+p$

The Legendre family

$$
E_{\lambda}: y^{2}=x(x-1)(x-\lambda)
$$

$-\operatorname{Zeta}\left(E_{\lambda} / \mathbb{F}_{p}, T\right)=\frac{1-a_{\lambda, p} T+p T^{2}}{(1-T)(1-p T)}$

- $N_{\mathbb{F}_{p}}(\lambda)=1-a_{\lambda, p}+p$
- So $a_{\lambda, p} \equiv 1-N_{\mathbb{F}_{p}}(\lambda) \bmod p$

The Legendre family

$$
E_{\lambda}: y^{2}=x(x-1)(x-\lambda)
$$

$-\operatorname{Zeta}\left(E_{\lambda} / \mathbb{F}_{p}, T\right)=\frac{1-a_{\lambda, p} T+p T^{2}}{(1-T)(1-p T)}$

- $N_{\mathbb{F}_{p}}(\lambda)=1-a_{\lambda, p}+p$
- So $a_{\lambda, p} \equiv 1-N_{\mathbb{F}_{p}}(\lambda) \bmod p$
- If p large enough $($ not 2 or 3$) N_{\mathbb{F}_{p}}(\lambda) \bmod p$ is all we need to know $a_{\lambda, p}$.

The Legendre family

Theorem (Igusa '58)

$$
N_{\mathbb{F}_{p}}(\lambda) \equiv(-1)^{\frac{p-1}{2}}\left[2 F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 \mid \lambda\right)\right]_{0}^{\frac{p-1}{2}} \bmod p .
$$

NOTE: We also know that ${ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 \mid \lambda\right)$ is the only holomorphic solution around 0 of the Picard-Fuchs differential equation satisfied by the periods of E_{λ}.

Monomial deformations of diagonal hypersurfaces A "new" approach

Gauss sums

- Let $\chi_{1 /(q-1)}: \mathbb{F}_{q}^{*} \rightarrow K^{*}$ be a fixed generator of the character group of \mathbb{F}_{q}^{*} where K is \mathbb{C} or \mathbb{C}_{p}.

Gauss sums

- Let $\chi_{1 /(q-1)}: \mathbb{F}_{q}^{*} \rightarrow K^{*}$ be a fixed generator of the character group of \mathbb{F}_{q}^{*} where K is \mathbb{C} or \mathbb{C}_{p}.
- For $s \in \frac{1}{q-1} \mathbb{Z} / \mathbb{Z}$ we let $\chi_{s}=\left(\chi_{1 /(q-1)}\right)^{s(q-1)}$, and for any s set $\chi_{s}(0)=0$.

Gauss sums

- Let $\chi_{1 /(q-1)}: \mathbb{F}_{q}^{*} \rightarrow K^{*}$ be a fixed generator of the character group of \mathbb{F}_{q}^{*} where K is \mathbb{C} or \mathbb{C}_{p}.
- For $s \in \frac{1}{q-1} \mathbb{Z} / \mathbb{Z}$ we let $\chi_{s}=\left(\chi_{1 /(q-1)}\right)^{s(q-1)}$, and for any s set $\chi_{s}(0)=0$.
- Let $\psi: \mathbb{F}_{q} \rightarrow K^{*}$ be a (fixed) additive character.

Gauss sums

- Let $\chi_{1 /(q-1)}: \mathbb{F}_{q}^{*} \rightarrow K^{*}$ be a fixed generator of the character group of \mathbb{F}_{q}^{*} where K is \mathbb{C} or \mathbb{C}_{p}.
- For $s \in \frac{1}{q-1} \mathbb{Z} / \mathbb{Z}$ we let $\chi_{s}=\left(\chi_{1 /(q-1)}\right)^{s(q-1)}$, and for any s set $\chi_{s}(0)=0$.
- Let $\psi: \mathbb{F}_{q} \rightarrow K^{*}$ be a (fixed) additive character.
- For $s \in \frac{1}{(q-1)} \mathbb{Z} / \mathbb{Z}$ we let $g(s)$ denote the Gauss sum

$$
g(s)=\sum_{x \in \mathbb{F}_{q}} \chi_{s}(x) \psi(x)
$$

Monomial deformations of diagonal hypersurfaces
A "new" approach

A family with a large group action

Let

$$
X_{\lambda}: x_{1}^{d}+\cdots+x_{n}^{d}-d \lambda x_{1}^{h_{1}} \cdots x_{n}^{h_{n}}=0
$$

where each h_{i} is a positive integer, $\sum h_{i}=d$ and $\operatorname{gcd}\left(d, h_{1}, \ldots, h_{n}\right)=1$.

Monomial deformations of diagonal hypersurfaces A "new" approach

A family with a large group action

Let

$$
X_{\lambda}: x_{1}^{d}+\cdots+x_{n}^{d}-d \lambda x_{1}^{h_{1}} \cdots x_{n}^{h_{n}}=0
$$

where each h_{i} is a positive integer, $\sum h_{i}=d$ and $\operatorname{gcd}\left(d, h_{1}, \ldots, h_{n}\right)=1$.

- Let μ_{d}^{n} be the group of n-tuples of d-th roots of unity in \mathbb{F}_{q}^{*}.

Monomial deformations of diagonal hypersurfaces A "new" approach

A family with a large group action

Let

$$
X_{\lambda}: x_{1}^{d}+\cdots+x_{n}^{d}-d \lambda x_{1}^{h_{1}} \cdots x_{n}^{h_{n}}=0
$$

where each h_{i} is a positive integer, $\sum h_{i}=d$ and $\operatorname{gcd}\left(d, h_{1}, \ldots, h_{n}\right)=1$.

- Let μ_{d}^{n} be the group of n-tuples of d-th roots of unity in \mathbb{F}_{q}^{*}.
- Let Δ be the diagonal elements of μ_{d}^{n}, i.e. elements of the form (ξ, \cdots, ξ).

A family with a large group action

Let

$$
X_{\lambda}: x_{1}^{d}+\cdots+x_{n}^{d}-d \lambda x_{1}^{h_{1}} \cdots x_{n}^{h_{n}}=0
$$

where each h_{i} is a positive integer, $\sum h_{i}=d$ and $\operatorname{gcd}\left(d, h_{1}, \ldots, h_{n}\right)=1$.

- Let μ_{d}^{n} be the group of n-tuples of d-th roots of unity in \mathbb{F}_{q}^{*}.
- Let Δ be the diagonal elements of μ_{d}^{n}, i.e. elements of the form (ξ, \cdots, ξ).
The varieties X_{λ} allow a faithful action of the group

$$
G=\left\{\xi \in \mu_{d}^{n} \mid \xi^{h}=1\right\} / \Delta
$$

by $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ taking the point $\left(x_{1}, \ldots, x_{n}\right)$ to $\left(\xi_{1} x_{1}, \ldots, \xi_{n} x_{n}\right)$.

A large group action

$$
\operatorname{char}(G) \leftrightarrow W,
$$

where

$$
W=\left\{\left(w_{1}, \ldots, w_{n}\right) \mid 0 \leq w_{i}<d, \sum w_{i} \equiv 0 \bmod d\right\}
$$

and $w^{\prime} \sim w$ if $w-w^{\prime}$ is a multiple $(\bmod \mathrm{d})$ of h.
Here

$$
\chi_{w}(\xi):=\chi\left(\xi^{w}\right), \quad \xi^{w}=\xi_{1}^{w_{1}} \cdots \xi_{n}^{w_{n}}
$$

and χ is a fixed primitive character of μ_{d}, which we can get for example by restricting $\chi_{1 /(q-1)}$ to μ_{d}.

Counting points using Gauss sums and Jacobi sums
Application: arithmetic mirror symmetry Computational considerations (Henri Cohen) Sage days ideas

Monomial deformations of diagonal hypersurfaces A "new" approach

Koblitz's result

Assume $d \mid q-1$.
Theorem (Koblitz)

$$
N_{\mathbb{F}_{q}}(\lambda)=N_{\mathbb{F}_{q}}(0)+\frac{1}{q-1} \sum_{\substack{s \in \frac{d}{q-1} \mathbb{Z} / \mathbb{Z} \\ w \in W}} \frac{g\left(\frac{w+s h}{d}\right)}{g(s)} \chi_{s}(d \lambda),
$$

where we denote $g\left(\frac{w+s h}{d}\right)=\prod_{i} g\left(\frac{w_{i}+s h_{i}}{d}\right)$.

Counting points using Gauss sums and Jacobi sums
Application: arithmetic mirror symmetry Computational considerations (Henri Cohen) Sage days ideas

Monomial deformations of diagonal hypersurfaces
A "new" approach

The Gross-Koblitz formula

Fix our attention on \mathbb{F}_{p}-points on our varieties.

Monomial deformations of diagonal hypersurfaces
A "new" approach

The Gross-Koblitz formula

Fix our attention on \mathbb{F}_{p}-points on our varieties.
Suppose we want to find a way to compute $N_{\mathbb{F}_{p}}(\lambda) \bmod p$. We use

The Gross-Koblitz formula

Fix our attention on \mathbb{F}_{p}-points on our varieties.
Suppose we want to find a way to compute $N_{\mathbb{F}_{p}}(\lambda) \bmod p$. We use
Theorem (Gross-Koblitz)
For $s \in \frac{1}{p-1} \mathbb{Z} / \mathbb{Z}$, we have

$$
g(s)=-(-p)^{s} \Gamma_{p}(s) .
$$

Here, Γ_{p} is the p-adic analog of the Gamma function.

Counting points using Gauss sums and Jacobi sums
Application: arithmetic mirror symmetry Computational considerations (Henri Cohen) Sage days ideas

Monomial deformations of diagonal hypersurfaces A "new" approach

The 0-dimensional family

Study $N_{\mathbb{F}_{p}}(\lambda) \bmod p$ for the family

$$
Z_{\lambda}: x_{1}^{d}+x_{2}^{d}-d \lambda x_{1} x_{2}^{d-1}=0 .
$$

Assume p is a prime such that $d \mid p-1$. We use the following: Formula (S)

$$
N_{\mathbb{F}_{p}}(\lambda)=N_{\mathbb{F}_{p}}(0)+\frac{-1}{p-1} \sum_{a=0}^{p-2} \frac{(-p)^{\eta(a)} \Gamma_{p}\left(\frac{a}{p-1}\right) \Gamma_{p}\left(\left\{\frac{(d-1) a}{p-1}\right\}\right)}{\Gamma_{p}\left(\left\{\frac{d a}{p-1}\right\}\right)} \omega(d \lambda)^{-d a}
$$

where $\eta(a)=\left(\frac{a}{p-1}+\left\{\frac{(d-1) a}{p-1}\right\}-\left\{\frac{d a}{p-1}\right\}\right)$.
Notation
$\Delta: \mathbb{F}_{p}^{*} \rightarrow \mathbb{C}_{p}^{*}$ - Teichmüller character. $(\omega(x) \equiv x \bmod p)$

- $\{x\}=x-[x]$, fractional part of x.

Counting points using Gauss sums and Jacobi sums
Application: arithmetic mirror symmetry Computational considerations (Henri Cohen) Sage days ideas

Monomial deformations of diagonal hypersurfaces A "new" approach

The 0-dimensional family

Theorem (S)

Let $\alpha^{(0)}=\left(\frac{1}{d}, \ldots, \frac{d-1}{d}\right), \beta^{(0)}=\left(\frac{1}{d-1}, \ldots, \frac{d-2}{d-1}\right)$.

$$
\begin{aligned}
& N_{\mathbb{F}_{p}}(\lambda)-N_{\mathbb{F}_{p}}(0) \\
& \equiv \sum_{i=0}^{d-2}\left[{ }_{d} F_{d-1}\left(\alpha^{(i)} ; \beta^{(i)} \mid(d-1)^{-(d-1)} \lambda^{-d}\right)\right] \frac{\frac{(i+1)(p-1)}{d}-1}{\frac{i(p-1)}{d-1}} \bmod p,
\end{aligned}
$$

where $\alpha^{(i)}=\left(\frac{1}{d}+1, \ldots, \frac{i}{d}+1, \frac{i+1}{d}, \ldots, \frac{d-1}{d}\right)$, and
$\beta^{(i)}=\left(\frac{1}{d-1}+1, \ldots, \frac{i}{d-1}+1, \frac{i+1}{d-1}, \ldots, \frac{d-2}{d-1}\right)$.
$[u(z)]_{i}^{j}$ denotes the polynomial which is the truncation of a series $u(z)$ from $n=i$ to j.

Counting points using Gauss sums and Jacobi sums
Application: arithmetic mirror symmetry Computational considerations (Henri Cohen) Sage days ideas

Monomial deformations of diagonal hypersurfaces A "new" approach

The 0-dimensional family

So for example in the case $d=3$ we get that

$$
\begin{aligned}
N_{\mathbb{F}_{p}}(\lambda)-N_{\mathbb{F}_{p}}(0) \equiv & {\left[{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; \frac{1}{2} \left\lvert\, \frac{1}{2^{2} \lambda^{3}}\right.\right)\right]_{0}^{\frac{p-1}{3}-1} } \\
& +\left[2 F_{1}\left(\frac{4}{3}, \frac{2}{3} ; \frac{3}{2} \left\lvert\, \frac{1}{2^{2} \lambda^{3}}\right.\right)\right]_{\frac{p-1}{2}}^{\frac{2(p-1)}{3}-1} \bmod p .
\end{aligned}
$$

Counting points using Gauss sums and Jacobi sums
Application: arithmetic mirror symmetry Computational considerations (Henri Cohen) Sage days ideas

The Dwork family of K3's

$$
x_{\lambda}: x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}-4 \lambda x_{1} x_{2} x_{3} x_{4}=0 .
$$

The set W is made up of 64 vectors, but we can split them up into 16 equivalence classes, and of those there are only three "types". These are

$$
\begin{aligned}
& (0,0,0,0),(1,1,1,1),(2,2,2,2),(3,3,3,3) \\
& (0,1,1,2),(1,2,2,3),(2,3,3,0),(3,0,0,1) \\
& (0,0,2,2),(1,1,3,3),(2,2,0,0),(3,3,1,1)
\end{aligned}
$$

The rest are permutations of these. So there is one class of the first type, 12 classes of the second type, and 3 classes of the third type.

Counting points using Gauss sums and Jacobi sums
Application: arithmetic mirror symmetry Computational considerations (Henri Cohen) Sage days ideas

Monomial deformations of diagonal hypersurfaces A "new" approach

The Dwork family of K3's

$$
\begin{align*}
& N_{\mathbb{F}_{p}}(\lambda)-N_{\mathbb{F}_{p}}(0)=\frac{1}{p-1} \sum_{s \in \frac{1}{\rho-1} \mathbb{Z} / \mathbb{Z}} \frac{g(s)^{4}}{g(4 s)} \chi_{4 s}(4 \lambda) \tag{1}\\
& +\frac{12}{p-1} \sum_{s \in \frac{1}{\rho-1} \mathbb{Z} / \mathbb{Z}} \frac{g(s) g\left(s+\frac{1}{4}\right)^{2} g\left(s+\frac{1}{2}\right)}{g(4 s)} \chi_{4 s}(4 \lambda) \tag{2}\\
& \quad+\frac{3}{p-1} \sum_{s \in \frac{1}{\rho-1} \mathbb{Z} / \mathbb{Z}} \frac{g(s)^{2} g\left(s+\frac{1}{2}\right)^{2}}{g(4 s)} \chi_{4 s}(4 \lambda) . \tag{3}
\end{align*}
$$

Counting points using Gauss sums and Jacobi sums
Application: arithmetic mirror symmetry Computational considerations (Henri Cohen) Sage days ideas

Monomial deformations of diagonal hypersurfaces A "new" approach

The Dwork family of K3's

Using Gross-Koblitz and taking mod p leaves only $\left(S_{1}\right)$, so

$$
N_{\mathbb{F}_{p}}(\lambda)-N_{\mathbb{F}_{p}}(0) \equiv\left[{ }_{3} F_{2}\left(\frac{1}{4}, \frac{1}{2}, \frac{3}{4} ; 1,1 \mid \lambda^{-4}\right)\right]_{0}^{\frac{p-1}{4}-1} \bmod p
$$

Counting points using Gauss sums and Jacobi sums
Application: arithmetic mirror symmetry Computational considerations (Henri Cohen) Sage days ideas

Monomial deformations of diagonal hypersurfaces
A "new" approach

The Dwork family of K3's

Xenia de la Ossa and Shabnam Kadir:

Counting points using Gauss sums and Jacobi sums
Application: arithmetic mirror symmetry Computational considerations (Henri Cohen) Sage days ideas

Monomial deformations of diagonal hypersurfaces
A "new" approach

The Dwork family of K3's

Xenia de la Ossa and Shabnam Kadir:

$$
\operatorname{Zeta}\left(X / \mathbb{F}_{p}, T\right)=\frac{1}{(1-T)(1-p T)\left(1-p^{2} T\right) P(T)}
$$

Counting points using Gauss sums and Jacobi sums
Application: arithmetic mirror symmetry Computational considerations (Henri Cohen) Sage days ideas

Monomial deformations of diagonal hypersurfaces
A "new" approach

The Dwork family of K3's

Xenia de la Ossa and Shabnam Kadir:

$$
\begin{gathered}
\operatorname{Zeta}\left(X / \mathbb{F}_{p}, T\right)=\frac{1}{(1-T)(1-p T)\left(1-p^{2} T\right) P(T)} \\
P(T)=R_{(0,0,0,0)}(T) R_{(0,0,2,2)}^{3}(T) R_{(0,1,1,2)}^{12}(T)
\end{gathered}
$$

Counting points using Gauss sums and Jacobi sums
Application: arithmetic mirror symmetry Computational considerations (Henri Cohen) Sage days ideas

Monomial deformations of diagonal hypersurfaces A "new" approach

The Dwork family of K3's

Xenia de la Ossa and Shabnam Kadir:

$$
\begin{gathered}
\operatorname{Zeta}\left(X / \mathbb{F}_{p}, T\right)=\frac{1}{(1-T)(1-p T)\left(1-p^{2} T\right) P(T)} \\
P(T)=R_{(0,0,0,0)}(T) R_{(0,0,2,2)}^{3}(T) R_{(0,1,1,2)}^{12}(T)
\end{gathered}
$$

where

- $R_{(0,0,0,0)}(T)=(1 \pm p T)\left(1-a T+p^{2} T\right)$
- $R_{(0,0,2,2)}(T)=(1 \pm p T)(1 \pm p T)$
- $R_{(0,1,1,2)}(T)=$

$$
\left\{\begin{array}{cc}
{[(1-p T)(1+p T)]^{1 / 2}} & \text { when } p \equiv 3 \bmod 4 \\
(1 \pm p T) & \text { otherwise }
\end{array}\right.
$$

Let $N(\alpha)$ be the number of \mathbb{F}_{q}-points on the projective hypersurface defined by

$$
\alpha_{1} x_{1}^{h_{1}^{(1)}} \cdots x_{n}^{h_{n}^{(1)}}+\cdots+\alpha_{r} x_{1}^{h_{1}^{(r)}} \cdots x_{n}^{h_{n}^{(r)}}=0
$$

where α is an r - tuple of nonzero elements of \mathbb{F}_{q}, and $q \not \backslash h_{i}^{(j)}$.

Let $N(\alpha)$ be the number of \mathbb{F}_{q}-points on the projective hypersurface defined by

$$
\alpha_{1} x_{1}^{h_{1}^{(1)}} \cdots x_{n}^{h_{n}^{(1)}}+\cdots+\alpha_{r} x_{1}^{h_{1}^{(r)}} \cdots x_{n}^{h_{n}^{(r)}}=0
$$

where α is an r - tuple of nonzero elements of \mathbb{F}_{q}, and $q \not \backslash h_{i}^{(j)}$. We abbreviate this as $\sum_{i=1}^{r} \alpha_{i} x^{h^{(i)}}$.

Let $N(\alpha)$ be the number of \mathbb{F}_{q}-points on the projective hypersurface defined by

$$
\alpha_{1} x_{1}^{h_{1}^{(1)}} \cdots x_{n}^{h_{n}^{(1)}}+\cdots+\alpha_{r} x_{1}^{h_{1}^{(r)}} \cdots x_{n}^{h_{n}^{(r)}}=0
$$

where α is an r - tuple of nonzero elements of \mathbb{F}_{q}, and $q \not \backslash h_{i}^{(j)}$. We abbreviate this as $\sum_{i=1}^{r} \alpha_{i} x^{h^{(i)}}$.
Let $N^{*}(\alpha)$ denote the number of points with all coordinates nonzero on the hypersurface.

Theorem (Delsarte '51, Furtado Gomida '51)

$$
N^{*}(\alpha)=\sum_{w} \chi_{w}^{-1}(\alpha) c_{\chi_{w}}
$$

where the summation is over all $w \in(\mathbb{Z} /(q-1) \mathbb{Z})^{r}$,
$\sum w_{i} \equiv 0 \bmod q$, which index the characters of μ_{q-1}^{r} / Δ, for which

$$
\sum_{i} h_{j}^{(i)} w_{i} \equiv 0 \bmod q \quad \text { for all } \quad j=1, \ldots, n
$$

and for such $w, c_{\chi_{w}}=-\frac{1}{q}(q-1)^{n-r} J\left(\frac{w_{1}}{q-1}, \ldots, \frac{w_{r}}{q-1}\right)$, unless
$w=(0, \ldots, 0)$, in which case $c_{\chi_{0}}=(q-1)^{n-r} \frac{(q-1)^{r-1}-(-1)^{r-1}}{q}$.

In terms of Gauss sums the expression for the coefficients becomes

$$
c_{\chi_{w}}=(q-1)^{n-r} \chi_{w_{r}}(-1) \frac{g\left(\frac{w_{1}}{q-1}\right) \cdots g\left(\frac{w_{r-1}}{q-1}\right)}{g\left(\frac{w_{1}}{q-1}+\cdots+\frac{w_{r-1}}{q-1}\right)}
$$

The Klein-Mukai pencil

Let

$$
X_{\psi}: x_{1}^{3} x_{2}+x_{2}^{3} x_{3}+x_{3}^{3} x_{1}+x_{4}^{4}-4 \psi x_{1} x_{2} x_{3} x_{4}=0
$$

Delsarte gives us a way to compute $N^{*}(1,1,1,1,-4 \psi)$ in terms of Gauss sums. In fact, same formula works to find the number of points with some zero coordinates (just count points on a different variety!).

Counting points using Gauss sums and Jacobi sums
Application: arithmetic mirror symmetry Computational considerations (Henri Cohen) Sage days ideas

Monomial deformations of diagonal hypersurfaces A "new" approach

The Klein-Mukai pencil

If $7 \times q-1$:

$$
N^{*}(\psi)=\frac{1}{q-1}\left[q^{3}-4 q^{3}+6 q-4-\sum_{k=1}^{q-2} \frac{g\left(\frac{k}{q-1}\right)^{4}}{g\left(\frac{4 k}{q-1}\right)} \chi_{4 k}(4 \psi)\right] .
$$

The Klein-Mukai pencil

Considering only over \mathbb{F}_{p} and using the Gross-Koblitz formula we get:
$N(\psi)=4 p-2+\frac{1}{p-1}\left(p^{3}-4 p^{2}+6 p-4-\sum_{r=1}^{p-2} \frac{\Gamma_{p}(r /(p-1))^{4}}{\Gamma_{p}(\{4 r /(p-1)\})}(-p)^{(4 r /(p-1)-\{4 r /(p-1)\})} \omega(4 /)^{r}\right)$
Which modulo p is exactly the same hypergeometric function we obtained for the Dwork family K3. That is

$$
N(\psi)-2 \equiv\left[{ }_{3} F_{2}\left(\frac{1}{4}, \frac{1}{2}, \frac{3}{4} ; 1,1 \mid \lambda^{-4}\right)\right]_{0}^{\frac{p-1}{4}-1} \bmod p
$$

Monomial deformations of diagonal hypersurfaces A "new" approach

The Klein-Mukai quartic

If $7 \mid q-1$:

$$
\begin{gathered}
N^{*}(\psi)=\frac{1}{q-1}\left[q^{3}-4 q^{3}+6 q-4-\frac{1}{q} \sum_{i=1}^{6} J\left(\frac{k}{7}, \frac{2 k}{7}, \frac{4 k}{7}\right)\right. \\
-\sum_{k=1}^{q-2} \frac{g\left(\frac{k}{q-1}\right)^{4}}{g\left(\frac{4 k}{q-1}\right)} \chi_{4 k}(4 \psi) \\
-\frac{3}{q-1} \sum_{k=1}^{q-2} \frac{g\left(\frac{k}{q-1}\right) g\left(\frac{k}{q-1}+\frac{1}{7}\right) g\left(\frac{k}{q-1}+\frac{2}{7}\right) g\left(\frac{k}{q-1}+\frac{4}{7}\right)}{g\left(\frac{4 k}{q-1}\right)} \chi_{4 k}(4 \psi) \\
3 \quad{ }^{q-2} g\left(\frac{k}{q-1}\right) g\left(\frac{k}{q-1}+\frac{3}{7}\right) g\left(\frac{k}{q-1}+\frac{5}{7}\right) g\left(\frac{k}{q-1}+\frac{6}{7}\right)
\end{gathered}
$$

Zeta function of the mirror

de la Ossa:

$$
\operatorname{Zeta}\left(Y / \mathbb{F}_{p}, T\right)=\frac{1}{(1-T)(1-p T)^{19}\left(1-p^{2} T\right) R_{(0,0,0,0)}(T)}
$$

Conjecture: Factor corresponding to invariant period appears in mirror zeta function and alternate pencils.

We have a formula involving Jacobi sums. How can we compute these?

We have a formula involving Jacobi sums. How can we compute these?

1. Compute directly - By properties of Jacobi sums, an order r Jacobi sum can be expressed as a product of $r-1$ Jacobi sums of order 2. The total cost of the computation is of the order $O\left((r-1) q^{2}\right)$.

We have a formula involving Jacobi sums. How can we compute these?

1. Compute directly - By properties of Jacobi sums, an order r Jacobi sum can be expressed as a product of $r-1$ Jacobi sums of order 2. The total cost of the computation is of the order $O\left((r-1) q^{2}\right)$.
2. Can gain a factor of $(r-1)$ by fixing a generator of the multiplicative character group.

We have a formula involving Jacobi sums. How can we compute these?

1. Compute directly - By properties of Jacobi sums, an order r Jacobi sum can be expressed as a product of $r-1$ Jacobi sums of order 2. The total cost of the computation is of the order $O\left((r-1) q^{2}\right)$.
2. Can gain a factor of $(r-1)$ by fixing a generator of the multiplicative character group.
3. Louboutin - if $p=q$ (the largest part of the computation), Gauss sums are linked to the root numbers of θ-functions associated to the characters. Cost is $O\left(q^{3 / 2+\varepsilon}\right)$.

We have a formula involving Jacobi sums. How can we compute these?

1. Compute directly - By properties of Jacobi sums, an order r Jacobi sum can be expressed as a product of $r-1$ Jacobi sums of order 2. The total cost of the computation is of the order $O\left((r-1) q^{2}\right)$.
2. Can gain a factor of $(r-1)$ by fixing a generator of the multiplicative character group.
3. Louboutin - if $p=q$ (the largest part of the computation), Gauss sums are linked to the root numbers of θ-functions associated to the characters. Cost is $O\left(q^{3 / 2+\varepsilon}\right)$.
4. Use p-adic Gamma function. Cost is about $O\left(p^{1+\varepsilon}\right)$, no more efficiend than theta functions a priori.

The main interest is we only need to compute values modulo p or p^{2}, since we know the number of points is an integer and we have the Weil-Deligne bounds. Although this is a $O\left(q^{2}\right)$ method, it is the best available when $p=q^{2}$, and even when $p=q$, since we can work $\bmod p$ and the implicit constant of $O()$ is very small, it is quite competitive in practice ($p \leq 10^{4}$ for instance).

Things we can compute

- Basic: Convert Pari code to Sage code.
- Count points on hypersurfaces in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$.
- Count points on the mirror hypersurfaces.

