Outline
Zeta functions
Counting points using Gauss sums and Jacobi sums
Application: arithmetic mirror symmetry
Computational considerations (Henri Cohen)
Sage days ideas

Counting points over finite fields

Adriana Salerno

Bates College

July 10, 2013

Outline Zeta functions

Counting points using Gauss sums and Jacobi sums Application: arithmetic mirror symmetry Computational considerations (Henri Cohen) Sage days ideas

Zeta functions

Motivating example

Counting points using Gauss sums and Jacobi sums Monomial deformations of diagonal hypersurfaces A "new" approach

Application: arithmetic mirror symmetry

Computational considerations (Henri Cohen)

Sage days ideas

▶ X/\mathbb{F}_q - algebraic variety over finite field of $q = p^f$ elements.

- \triangleright X/\mathbb{F}_q algebraic variety over finite field of $q=p^f$ elements.
- $ightharpoonup N_s(X) = \#X(\mathbb{F}_{a^s})$ number of \mathbb{F}_{a^s} -rational points on X.

- ▶ X/\mathbb{F}_q algebraic variety over finite field of $q = p^f$ elements.
- $ightharpoonup N_s(X) = \#X(\mathbb{F}_{q^s})$ number of \mathbb{F}_{q^s} -rational points on X.

Sage days ideas

▶ The Zeta function of X is

$$\mathsf{Zeta}(X/\mathbb{F}_q,\, \mathcal{T}) := \mathsf{exp}\left(\sum_{s=1}^\infty \mathsf{N}_s(X) rac{\mathcal{T}^s}{s}
ight) \in \mathbb{Q}[[t]]$$

- ▶ X/\mathbb{F}_q algebraic variety over finite field of $q = p^f$ elements.
- $ightharpoonup N_s(X) = \#X(\mathbb{F}_{q^s})$ number of \mathbb{F}_{q^s} -rational points on X.
- ▶ The *Zeta function* of *X* is

$$\mathsf{Zeta}(X/\mathbb{F}_q,\, T) := \mathsf{exp}\left(\sum_{s=1}^\infty \mathsf{N}_s(X) rac{T^s}{s}
ight) \in \mathbb{Q}[[t]]$$

Theorem (Dwork '60)

 $\operatorname{Zeta}(X/\mathbb{F}_q,T)$ is a rational function of T.

Motivating example

Weil conjectures (for hypersurfaces)

X smooth, projective hypersurface in \mathbb{P}^n , we have:

Sage days ideas

X smooth, projective hypersurface in \mathbb{P}^n , we have:

Sage days ideas

X smooth, projective hypersurface in \mathbb{P}^n , we have:

Sage days ideas

► Zeta
$$(X/\mathbb{F}_q, T) = \frac{P(T)^{\pm 1}}{(1-T)(1-qT)(1-q^2T)\cdots(1-q^{n-1}T)}$$

where deg $P(T) = b_{n-1} = \dim H^{n-1}_{dR}(X) = Betti number$.

X smooth, projective hypersurface in \mathbb{P}^n , we have:

- ▶ $Zeta(X/\mathbb{F}_q, T) = \frac{P(T)^{\pm 1}}{(1 T)(1 qT)(1 q^2T)\cdots(1 q^{n-1}T)}$ where $\deg P(T) = b_{n-1} = \dim H^{n-1}_{dR}(X) = Betti \ number$.
- ▶ If α reciprocal root of P(T), then so is q^{n-1}/α .

X smooth, projective hypersurface in \mathbb{P}^n , we have:

- ▶ $Zeta(X/\mathbb{F}_q, T) = \frac{P(T)^{\pm 1}}{(1 T)(1 qT)(1 q^2T)\cdots(1 q^{n-1}T)}$ where $\deg P(T) = b_{n-1} = \dim H^{n-1}_{dR}(X) = Betti \ number$.
- ▶ If α reciprocal root of P(T), then so is q^{n-1}/α .
- ▶ If α reciprocal root then $|\alpha| = q^{(n-1)/2}$. (Riemann hypothesis).

$$E_{\lambda}: y^2 = x(x-1)(x-\lambda)$$

$$E_{\lambda}: y^2 = x(x-1)(x-\lambda)$$

$$E_{\lambda}: y^2 = x(x-1)(x-\lambda)$$

$$\qquad \mathsf{N}_{\mathbb{F}_p}(\lambda) = 1 - \mathsf{a}_{\lambda,p} + \mathsf{p}$$

$$E_{\lambda}: y^2 = x(x-1)(x-\lambda)$$

• So
$$a_{\lambda,p} \equiv 1 - N_{\mathbb{F}_p}(\lambda) \mod p$$

$$E_{\lambda}: y^2 = x(x-1)(x-\lambda)$$

- $\geq \operatorname{Zeta}(E_{\lambda}/\mathbb{F}_{p}, T) = \frac{1 a_{\lambda,p}T + pT^{2}}{(1 T)(1 pT)}$
- So $a_{\lambda,p} \equiv 1 N_{\mathbb{F}_p}(\lambda) \mod p$
- ▶ If p large enough (not 2 or 3) $N_{\mathbb{F}_p}(\lambda)$ mod p is all we need to know $a_{\lambda,p}$.

Theorem (Igusa '58)

$$N_{\mathbb{F}_p}(\lambda) \equiv (-1)^{\frac{p-1}{2}} \left[{}_2F_1\left(rac{1}{2},rac{1}{2};1\bigg|\,\lambda
ight)
ight]_0^{rac{p-1}{2}} mod p.$$

NOTE: We also know that ${}_2F_1(\frac{1}{2},\frac{1}{2};1|\lambda)$ is the only holomorphic solution around 0 of the Picard-Fuchs differential equation satisfied by the periods of E_{λ} .

Let $\chi_{1/(q-1)}: \mathbb{F}_q^* \to K^*$ be a fixed generator of the character group of \mathbb{F}_q^* where K is \mathbb{C} or \mathbb{C}_p .

Sage days ideas

Let $\chi_{1/(q-1)}: \mathbb{F}_q^* \to K^*$ be a fixed generator of the character group of \mathbb{F}_q^* where K is \mathbb{C} or \mathbb{C}_p .

Sage days ideas

▶ For $s \in \frac{1}{q-1}\mathbb{Z}/\mathbb{Z}$ we let $\chi_s = (\chi_{1/(q-1)})^{s(q-1)}$, and for any s set $\chi_s(0) = 0$.

- ▶ Let $\chi_{1/(q-1)}: \mathbb{F}_q^* \to K^*$ be a fixed generator of the character group of \mathbb{F}_q^* where K is \mathbb{C} or \mathbb{C}_p .
- ▶ For $s \in \frac{1}{q-1}\mathbb{Z}/\mathbb{Z}$ we let $\chi_s = (\chi_{1/(q-1)})^{s(q-1)}$, and for any s set $\chi_s(0) = 0$.
- ▶ Let $\psi : \mathbb{F}_q \to K^*$ be a (fixed) additive character.

- Let $\chi_{1/(q-1)}: \mathbb{F}_q^* \to K^*$ be a fixed generator of the character group of \mathbb{F}_q^* where K is \mathbb{C} or \mathbb{C}_p .
- ▶ For $s \in \frac{1}{q-1}\mathbb{Z}/\mathbb{Z}$ we let $\chi_s = (\chi_{1/(q-1)})^{s(q-1)}$, and for any s set $\chi_s(0) = 0$.
- ▶ Let $\psi : \mathbb{F}_a \to K^*$ be a (fixed) additive character.

Sage days ideas

▶ For $s \in \frac{1}{(g-1)}\mathbb{Z}/\mathbb{Z}$ we let g(s) denote the Gauss sum

$$g(s) = \sum_{x \in \mathbb{F}_q} \chi_s(x) \psi(x)$$

Let

$$X_{\lambda}: x_1^d + \cdots + x_n^d - d\lambda x_1^{h_1} \cdots x_n^{h_n} = 0$$

where each h_i is a positive integer, $\sum h_i = d$ and $gcd(d, h_1, ..., h_n) = 1$.

Sage days ideas

Let

$$X_{\lambda}: x_1^d + \dots + x_n^d - d\lambda x_1^{h_1} \dots x_n^{h_n} = 0$$

where each h_i is a positive integer, $\sum h_i = d$ and $gcd(d, h_1, ..., h_n) = 1$.

Sage days ideas

Let μ_d^n be the group of *n*-tuples of *d*-th roots of unity in \mathbb{F}_q^* .

Let

$$X_{\lambda}: x_1^d + \dots + x_n^d - d\lambda x_1^{h_1} \cdots x_n^{h_n} = 0$$

where each h_i is a positive integer, $\sum h_i = d$ and $gcd(d, h_1, ..., h_n) = 1$.

- ▶ Let μ_d^n be the group of *n*-tuples of *d*-th roots of unity in \mathbb{F}_q^* .
- Let Δ be the diagonal elements of μ_d^n , i.e. elements of the form (ξ, \dots, ξ) .

Let

$$X_{\lambda}: x_1^d + \dots + x_n^d - d\lambda x_1^{h_1} \dots x_n^{h_n} = 0$$

where each h_i is a positive integer, $\sum h_i = d$ and $gcd(d, h_1, ..., h_n) = 1$.

- Let μ_d^n be the group of *n*-tuples of *d*-th roots of unity in \mathbb{F}_q^* .
- Let Δ be the diagonal elements of μ_d^n , i.e. elements of the form (ξ, \dots, ξ) .

The varieties X_{λ} allow a faithful action of the group

$$G = \{ \xi \in \mu_d^n | \xi^h = 1 \} / \Delta,$$

by $\xi = (\xi_1, \dots, \xi_n)$ taking the point (x_1, \dots, x_n) to $(\xi_1 x_1, \dots, \xi_n x_n)$.

A large group action

$$char(G) \leftrightarrow W$$
,

where

$$W = \{(w_1, \ldots, w_n) | 0 \le w_i < d, \sum w_i \equiv 0 \mod d\},$$

and $w' \sim w$ if w - w' is a multiple (mod d) of h. Here

$$\chi_w(\xi) := \chi(\xi^w), \qquad \xi^w = \xi_1^{w_1} \cdots \xi_n^{w_n}$$

and χ is a fixed primitive character of μ_d , which we can get for example by restricting $\chi_{1/(q-1)}$ to μ_d .

Koblitz's result

Assume d|q-1.

Theorem (Koblitz)

$$extstyle extstyle extstyle N_{\mathbb{F}_q}(\lambda) = extstyle N_{\mathbb{F}_q}(0) + rac{1}{q-1} \sum_{\substack{s \in rac{d}{q-1}\mathbb{Z}/\mathbb{Z} \ w \in W}} rac{g\left(rac{w+sh}{d}
ight)}{g(s)} \chi_s(d\lambda),$$

where we denote
$$g\left(\frac{w+sh}{d}\right)=\prod_i g\left(\frac{w_i+sh_i}{d}\right)$$
.

Sage days ideas

Monomial deformations of diagonal hypersurfaces A "new" approach

The Gross-Koblitz formula

Fix our attention on \mathbb{F}_p -points on our varieties.

The Gross-Koblitz formula

Fix our attention on \mathbb{F}_p -points on our varieties. Suppose we want to find a way to compute $N_{\mathbb{F}_p}(\lambda)$ mod p. We use

The Gross-Koblitz formula

Fix our attention on \mathbb{F}_p -points on our varieties.

Suppose we want to find a way to compute $N_{\mathbb{F}_p}(\lambda)$ mod p. We use

Theorem (Gross-Koblitz)

For $s \in \frac{1}{p-1}\mathbb{Z}/\mathbb{Z}$, we have

$$g(s) = -(-p)^s \Gamma_p(s).$$

Here, Γ_p is the *p*-adic analog of the Gamma function.

Sage days ideas

The 0-dimensional family

Study $N_{\mathbb{F}_n}(\lambda)$ mod p for the family

$$Z_{\lambda}: x_1^d + x_2^d - d\lambda x_1 x_2^{d-1} = 0.$$

Assume p is a prime such that d|p-1. We use the following:

Formula (S)

$$N_{\mathbb{F}_{p}}(\lambda) = N_{\mathbb{F}_{p}}(0) + \frac{-1}{p-1} \sum_{a=0}^{p-2} \frac{(-p)^{\eta(a)} \Gamma_{p}\left(\frac{a}{p-1}\right) \Gamma_{p}\left(\left\{\frac{(d-1)a}{p-1}\right\}\right)}{\Gamma_{p}\left(\left\{\frac{da}{p-1}\right\}\right)} \omega(d\lambda)^{-da}$$

where
$$\eta(a)=\Big(\frac{a}{p-1}+\{\frac{(d-1)a}{p-1}\}-\{\frac{da}{p-1}\}\Big).$$
 Notation

- $\omega: \mathbb{F}_p^* \to \mathbb{C}_p^*$ Teichmüller character. $(\omega(x) \equiv x \mod p)$
- $\{x\} = x [x]$, fractional part of x.

The 0-dimensional family

Theorem (S)

Let
$$\alpha^{(0)} = (\frac{1}{d}, \dots, \frac{d-1}{d}), \beta^{(0)} = (\frac{1}{d-1}, \dots, \frac{d-2}{d-1}).$$

Sage days ideas

$$N_{\mathbb{F}_p}(\lambda) - N_{\mathbb{F}_p}(0)$$

$$\equiv \sum_{i=0}^{d-2} \left[{}_{d}F_{d-1}(\alpha^{(i)}; \beta^{(i)}|(d-1)^{-(d-1)}\lambda^{-d}) \right]_{\frac{i(p-1)}{d-1}}^{\frac{(i+1)(p-1)}{d}-1} \bmod p,$$

where
$$\alpha^{(i)} = \left(\frac{1}{d} + 1, \dots, \frac{i}{d} + 1, \frac{i+1}{d}, \dots, \frac{d-1}{d}\right)$$
, and $\beta^{(i)} = \left(\frac{1}{d-1} + 1, \dots, \frac{i}{d-1} + 1, \frac{i+1}{d-1}, \dots, \frac{d-2}{d-1}\right)$.

 $[u(z)]_{i}^{j}$ denotes the polynomial which is the truncation of a series u(z) from n = i to j.

The 0-dimensional family

So for example in the case d = 3 we get that

$$N_{\mathbb{F}_{p}}(\lambda) - N_{\mathbb{F}_{p}}(0) \equiv \left[{}_{2}F_{1}\left(\frac{1}{3}, \frac{2}{3}; \frac{1}{2} \middle| \frac{1}{2^{2}\lambda^{3}}\right) \right]_{0}^{\frac{\rho-1}{3}-1} \\
+ \left[{}_{2}F_{1}\left(\frac{4}{3}, \frac{2}{3}; \frac{3}{2} \middle| \frac{1}{2^{2}\lambda^{3}}\right) \right]_{\frac{\rho-1}{2}}^{\frac{2(\rho-1)}{3}-1} \mod \rho.$$

The Dwork family of K3's

$$X_{\lambda}: x_1^4 + x_2^4 + x_3^4 + x_4^4 - 4\lambda x_1 x_2 x_3 x_4 = 0.$$

The set W is made up of 64 vectors, but we can split them up into 16 equivalence classes, and of those there are only three "types". These are

$$(0,0,0,0), (1,1,1,1), (2,2,2,2), (3,3,3,3)$$

$$(0,1,1,2),(1,2,2,3),(2,3,3,0),(3,0,0,1)$$

$$(0,0,2,2),(1,1,3,3),(2,2,0,0),(3,3,1,1)$$

The rest are permutations of these. So there is one class of the first type, 12 classes of the second type, and 3 classes of the third type.

The Dwork family of K3's

$$N_{\mathbb{F}_p}(\lambda) - N_{\mathbb{F}_p}(0) = \frac{1}{p-1} \sum_{s \in \frac{1}{p-1}\mathbb{Z}/\mathbb{Z}} \frac{g(s)^4}{g(4s)} \chi_{4s}(4\lambda)$$
 (S₁)

$$+\frac{12}{p-1}\sum_{s\in\frac{1}{p-1}\mathbb{Z}/\mathbb{Z}}\frac{g(s)g(s+\frac{1}{4})^2g(s+\frac{1}{2})}{g(4s)}\chi_{4s}(4\lambda) \qquad (S_2)$$

$$+\frac{3}{p-1}\sum_{s\in\frac{1}{p-1}\mathbb{Z}/\mathbb{Z}}\frac{g(s)^2g(s+\frac{1}{2})^2}{g(4s)}\chi_{4s}(4\lambda). \tag{S_3}$$

The Dwork family of K3's

Using Gross-Koblitz and taking mod p leaves only (S_1) , so

Sage days ideas

$$N_{\mathbb{F}_p}(\lambda) - N_{\mathbb{F}_p}(0) \equiv \left[{}_3F_2\left(rac{1}{4},rac{1}{2},rac{3}{4};1,1igg|\,\lambda^{-4}
ight)
ight]_0^{rac{
ho-1}{4}-1} mod p$$

Xenia de la Ossa and Shabnam Kadir:

Xenia de la Ossa and Shabnam Kadir:

$$\mathsf{Zeta}(X/\mathbb{F}_p, T) = \frac{1}{(1-T)(1-pT)(1-p^2T)P(T)}$$

Sage days ideas

Xenia de la Ossa and Shabnam Kadir:

Zeta
$$(X/\mathbb{F}_p, T) = \frac{1}{(1-T)(1-pT)(1-p^2T)P(T)}$$
$$P(T) = R_{(0,0,0,0)}(T)R_{(0,0,2,2)}^3(T)R_{(0,1,1,2)}^{12}(T)$$

Xenia de la Ossa and Shabnam Kadir:

Zeta
$$(X/\mathbb{F}_p, T) = \frac{1}{(1-T)(1-pT)(1-p^2T)P(T)}$$
$$P(T) = R_{(0,0,0,0)}(T)R_{(0,0,2,2)}^3(T)R_{(0,1,1,2)}^{12}(T)$$

where

$$R_{(0,0,0,0)}(T) = (1 \pm pT)(1 - aT + p^2T)$$

$$Arr$$
 $R_{(0,0,2,2)}(T) = (1 \pm pT)(1 \pm pT)$

$$ho$$
 $R_{(0,1,1,2)}(T)=$

$$\left\{egin{array}{ll} [(1-pT)(1+pT)]^{1/2} & ext{when } p\equiv 3 ext{ mod 4} \\ (1\pm pT) & ext{otherwise} \end{array}
ight.$$

Let $N(\alpha)$ be the number of \mathbb{F}_q -points on the projective hypersurface defined by

$$\alpha_1 x_1^{h_1^{(1)}} \cdots x_n^{h_n^{(1)}} + \cdots + \alpha_r x_1^{h_1^{(r)}} \cdots x_n^{h_n^{(r)}} = 0,$$

where α is an r- tuple of nonzero elements of \mathbb{F}_q , and $q \not| h_i^{(j)}$.

Let $N(\alpha)$ be the number of \mathbb{F}_q -points on the projective hypersurface defined by

$$\alpha_1 x_1^{h_1^{(1)}} \cdots x_n^{h_n^{(1)}} + \cdots + \alpha_r x_1^{h_1^{(r)}} \cdots x_n^{h_n^{(r)}} = 0,$$

where α is an r- tuple of nonzero elements of \mathbb{F}_q , and $q \not| h_i^{(j)}$. We abbreviate this as $\sum_{i=1}^r \alpha_i x^{h^{(i)}}$.

Let $N(\alpha)$ be the number of \mathbb{F}_q -points on the projective hypersurface defined by

$$\alpha_1 x_1^{h_1^{(1)}} \cdots x_n^{h_n^{(1)}} + \cdots + \alpha_r x_1^{h_1^{(r)}} \cdots x_n^{h_n^{(r)}} = 0,$$

where α is an r- tuple of nonzero elements of \mathbb{F}_q , and $q \not| h_i^{(j)}$. We abbreviate this as $\sum_{i=1}^r \alpha_i x^{h^{(i)}}$.

Let $N^*(\alpha)$ denote the number of points with all coordinates nonzero on the hypersurface.

Theorem (Delsarte '51, Furtado Gomida '51)

$$N^*(\alpha) = \sum_{w} \chi_w^{-1}(\alpha) c_{\chi_w},$$

where the summation is over all $w \in (\mathbb{Z}/(q-1)\mathbb{Z})^r$, $\sum w_i \equiv 0 \mod q$, which index the characters of μ_{q-1}^r/Δ , for which

$$\sum_{i} h_{j}^{(i)} w_{i} \equiv 0 \mod q \qquad \text{for all} \qquad j = 1, \dots, n;$$

and for such
$$w$$
, $c_{\chi_w} = -\frac{1}{q}(q-1)^{n-r}J\left(\frac{w_1}{q-1},\dots,\frac{w_r}{q-1}\right)$, unless $w=(0,\dots,0)$, in which case $c_{\chi_0}=(q-1)^{n-r}\frac{(q-1)^{r-1}-(-1)^{r-1}}{q}$.

In terms of Gauss sums the expression for the coefficients becomes

Sage days ideas

$$c_{\chi_w} = (q-1)^{n-r} \chi_{w_r} (-1) \frac{g\left(\frac{w_1}{q-1}\right) \cdots g\left(\frac{w_{r-1}}{q-1}\right)}{g\left(\frac{w_1}{q-1} + \cdots + \frac{w_{r-1}}{q-1}\right)}.$$

The Klein-Mukai pencil

Let

$$X_{\psi}: x_1^3 x_2 + x_2^3 x_3 + x_3^3 x_1 + x_4^4 - 4\psi x_1 x_2 x_3 x_4 = 0.$$

Delsarte gives us a way to compute $N^*(1,1,1,1,-4\psi)$ in terms of Gauss sums. In fact, same formula works to find the number of points with some zero coordinates (just count points on a different variety!).

The Klein-Mukai pencil

If
$$7 \ / (q-1)$$
:

$$N^*(\psi) = rac{1}{q-1} \left[q^3 - 4q^3 + 6q - 4 - \sum_{k=1}^{q-2} rac{g\left(rac{k}{q-1}
ight)^4}{g\left(rac{4k}{q-1}
ight)} \chi_{4k}(4\psi)
ight].$$

Sage days ideas

The Klein-Mukai pencil

Considering only over \mathbb{F}_p and using the Gross-Koblitz formula we get:

$$N(\psi) = 4p - 2 + \frac{1}{p-1} \left(p^3 - 4p^2 + 6p - 4 - \sum_{r=1}^{p-2} \frac{\Gamma_p(r/(p-1))^4}{\Gamma_p(\{4r/(p-1)\})} (-p)^{(4r/(p-1) - \{4r/(p-1)\})} \omega(4l)^r \right)$$

Which modulo p is exactly the same hypergeometric function we obtained for the Dwork family K3. That is

$$N(\psi) - 2 \equiv \left[{}_{3}F_{2}\left(\frac{1}{4}, \frac{1}{2}, \frac{3}{4}; 1, 1 \middle| \lambda^{-4} \right) \right]_{0}^{\frac{\rho-1}{4} - 1} \mod p$$

The Klein-Mukai quartic

If 7|q-1:

$$N^{*}(\psi) = \frac{1}{q-1} \left[q^{3} - 4q^{3} + 6q - 4 - \frac{1}{q} \sum_{i=1}^{0} J\left(\frac{k}{7}, \frac{2k}{7}, \frac{4k}{7}\right) - \sum_{k=1}^{q-2} \frac{g\left(\frac{k}{q-1}\right)^{4}}{g\left(\frac{4k}{q-1}\right)} \chi_{4k}(4\psi) - \frac{3}{q-1} \sum_{k=1}^{q-2} \frac{g\left(\frac{k}{q-1}\right)g\left(\frac{k}{q-1} + \frac{1}{7}\right)g\left(\frac{k}{q-1} + \frac{2}{7}\right)g\left(\frac{k}{q-1} + \frac{4}{7}\right)}{g\left(\frac{4k}{q-1}\right)} \chi_{4k}(4\psi) - \frac{3}{q-1} \sum_{k=1}^{q-2} g\left(\frac{k}{q-1}\right)g\left(\frac{k}{q-1} + \frac{3}{7}\right)g\left(\frac{k}{q-1} + \frac{5}{7}\right)g\left(\frac{k}{q-1} + \frac{6}{7}\right) - \frac{3}{q-1} \chi_{4k}(4\psi)$$

Adriana Salerno Counting points over finite fields

Zeta function of the mirror

de la Ossa:

$$\mathsf{Zeta}(Y/\mathbb{F}_p, T) = \frac{1}{(1-T)(1-pT)^{19}(1-p^2T)R_{(0,0,0,0)}(T)}$$

Conjecture: Factor corresponding to invariant period appears in mirror zeta function and alternate pencils.

Outline
Zeta functions
Counting points using Gauss sums and Jacobi sums
Application: arithmetic mirror symmetry
Computational considerations (Henri Cohen)
Sage days ideas

1. Compute directly - By properties of Jacobi sums, an order r Jacobi sum can be expressed as a product of r-1 Jacobi sums of order 2. The total cost of the computation is of the order $O((r-1)q^2)$.

- 1. Compute directly By properties of Jacobi sums, an order r Jacobi sum can be expressed as a product of r-1 Jacobi sums of order 2. The total cost of the computation is of the order $O((r-1)q^2)$.
- 2. Can gain a factor of (r-1) by fixing a generator of the multiplicative character group.

- 1. Compute directly By properties of Jacobi sums, an order r Jacobi sum can be expressed as a product of r-1 Jacobi sums of order 2. The total cost of the computation is of the order $O((r-1)q^2)$.
- 2. Can gain a factor of (r-1) by fixing a generator of the multiplicative character group.
- 3. Louboutin if p=q (the largest part of the computation), Gauss sums are linked to the root numbers of θ -functions associated to the characters. Cost is $O(q^{3/2+\varepsilon})$.

- 1. Compute directly By properties of Jacobi sums, an order r Jacobi sum can be expressed as a product of r-1 Jacobi sums of order 2. The total cost of the computation is of the order $O((r-1)q^2)$.
- 2. Can gain a factor of (r-1) by fixing a generator of the multiplicative character group.
- 3. Louboutin if p=q (the largest part of the computation), Gauss sums are linked to the root numbers of θ -functions associated to the characters. Cost is $O(q^{3/2+\varepsilon})$.
- 4. Use p-adic Gamma function. Cost is about $O(p^{1+\varepsilon})$, no more efficiend than theta functions a priori.

Outline
Zeta functions
Counting points using Gauss sums and Jacobi sums
Application: arithmetic mirror symmetry
Computational considerations (Henri Cohen)
Sage days ideas

The main interest is we only need to compute values modulo p or p^2 , since we know the number of points is an integer and we have the Weil-Deligne bounds. Although this is a $O(q^2)$ method, it is the best available when $p=q^2$, and even when p=q, since we can work mod p and the implicit constant of O() is very small, it is quite competitive in practice ($p \le 10^4$ for instance).

Things we can compute

- Basic: Convert Pari code to Sage code.
- ▶ Count points on hypersurfaces in $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$.
- Count points on the mirror hypersurfaces.