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History of the Algorithm: Round Four

Ford (1978): On the Computation of the Maximal Order in a
Dedekind Domain

Cantor, Gordon (2000): Factoring polynomials over p-adic fields

P. (2001): Factoring polynomials over local fields

Ford, P., Roblot (2002): A fast algorithm for polynomial factorization
over Qp
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History of the Algorithm: Montes

Ore (1928): Newtonsche Polygone in der Theorie der algebraischen
Körper

MacLane (1936): A Construction for absolute values in polynomial
rings

Montes, Nart (1992): On a theorem of Ore

Montes (1999): Poĺıgonos de Newton de orden superior y aplicaciones
aritméticas

Guardia, Montes, Nart (since 2008): Newton polygons of higher order
in algebraic number theory, . . .
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Recent Developments

Ford, Veres (2009/10): Complexity of Montes algorithm

O(N3+εν(discΦ) + N2+εν(discΦ)2+ε)

P. (2010): Factoring polynomials over local fields II

Guardia, Nart, P. (2011): Single factor lifting for polynomials over
local fields
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Implementations

Ford (197x) in Algeb: Maximal orders of number fields

Ford, Letard (1994) in Pari: Maximal orders of number fields

Baier (1996) in KANT / Magma: Maximal orders of number fields

Guardia (2000) in Mathematica: Ideal decomposition

Roblot (2001) in Pari: Polynomial factorization over Zp

P. (2001/03) in Magma: Polynomial factorization over local fields

Guardia, Nart (2009) Ideal+ for Magma: Ideal decomposition

Sinclair (2012) in Sage: Polynomial factorization over Zp
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Applications

Local Fields

Integral Basis (splitting extensions into unramified and ramified part)

Two Element Certificates for Irreducibility

Splitting Fields

Global Fields

Prime Decomposition

Integral Basis

Completions
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Notation

K field complete with respect to a non-archimedian valuation

OK valuation ring of K

π uniformizing element in OK

ν exponential valuation normalized such that ν(π) = 1

K residue class field OK/(π) of K with char K = p

Φ(x) ∈ OK [x ] the polynomial to be factored

ϕ(x) ∈ OK [x ] an approximation to an irreducible factor of Φ(x)
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Reducibility – Classical

Let Φ(x) =
∑N

i=0 Φix
i =

∏N
j=1(x − αj) ∈ OK [x ].

Hensel’s Lemma

If there is a factorization of Φ(x) into coprime factors over the residue
class field K , then there is a factorization of Φ(x) over OK .

The lower convex hull of the set of points

{(i , ν(Φi )) | 0 ≤ i ≤ N}

is the Newton polygon of Φ(x).

Let v be a the slope of a segment of length n of the Newton Polygon of
Φ(x) then there are j1, . . . , jn such that ν(αji ) = v for 1 ≤ i ≤ n.

Theorem

Each segment of the Newton Polygon of Φ(x) corresponds to a proper
factor of Φ(x).
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Approximations to an Irreducible Factor

Let Φ(x) ∈ OK [x ] be the polynomial to be factored

Let α be a root of Φ(x). α is a root of an irreducible factor P(x) of Φ(x).

Construct a sequence of approximations

ϕ1(x) = x , ϕ2(x), . . . , ϕk(x) ∈ OK [x ]

to the irreducible factor P(x) such that

ν(ϕ1(α)) < ν(ϕ2(α)) < · · · < ν(ϕk(α))

with
deg(ϕ1) | deg(ϕ2) | · · · | deg(ϕm) = deg(P).
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Approximations to an Irreducible Factor

Let
ϕ1(x) = x , ϕ2(x), . . . , ϕk(x) ∈ OK [x ]

be a sequence of approximations to an irreducible factor of Φ(x).

If deg(ϕt+1) = deg(ϕt) then this step is called an improvement step.

If deg(ϕt+1) > deg(ϕt) then this step is called a Montes step.

ϕt+1(x) is a key polynomial (MacLane). Each key polynomial, together
with the previous key polynomials yields a valuation on K [x ].
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Irreducibility – Bound

Theorem

If α1, . . . , αN are elements of an algebraic closure of K ,

– Φ(x) =
∏N

j=1(x − αj) ∈ OK [x ] squarefree,

– ϕ(x) ∈ OK [x ],

– N · ν(ϕ(αj)) > 2 · ν(discΦ) for all 1 ≤ j ≤ N, and

– the degree of any irreducible factor of Φ(x) is greater than or equal to
degϕ,

then N = deg(ϕ) and Φ(x) is irreducible over K .
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1st Iteration – Newton Polygon

Newton Polygon of Φ(x) = xN +
∑N−1

i=0 aix
i

with first segment slope − h1

e1
, gcd(h1, e1) = 1
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and second segment slope − h′1

e′1

The Newton polygon of Φ(x) yields the valuations ν(ϕ1(α)) for ϕ1(x) = x for the
roots α of Φ(x).

Here (after reordering the roots α = α1, . . . , αN of Φ(x) if necessary):

ν(α1) = · · · = ν(αM) = h1

e1
and ν(αM+1) = · · · = ν(αN) =

h′1
e′1

.

E1 := e1 is a divisor of the ramification index of K (αi )/K (1 ≤ i ≤ M).
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1st Iteration – Residual Polynomial

Newton Polygon of Φ(x) = xN +
∑N−1

i=0 aix
i

with first segment slope − h1

e1
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Newton Polygon of Φ[(y) := Φ(βy)/(βMπν(aM ))

where β ∈ K such that βe1 = πh1

We have Φ[(y) = Φ(βy)/(βMπν(aM )) =
∑N

i=0 aiβ
i−Mπ−ν(aM )y i . We set

A1(z) :=

M/e1∑
j=0

aje1π
h1(j−M/e1)−ν(aM )z j .

A1(z) ∈ K is the residual polynomial of Φ(x) with respect to the first segment.
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1st Iteration – The next ϕ

Let A1(z) be the residual polynomial, so ν
(
A1

(
ϕ
e1
1 (α)

πh1

))
> 0.

A1(z) = ρ
1
(z)r1 · · · · · ρrm

m
(z) for some irreducible ρ

i
(z) ∈ K (1 ≤ i ≤ m).

F1 := deg ρ
1

is a divisor of the inertia degree of K (αi ) for 1 ≤ i ≤ F1 · r1
(after reordering the roots α = α1, . . . , αM of Φ(x) if necessary).
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1st Iteration – The next ϕ

Let A1(z) be the residual polynomial, so ν
(
A1

(
ϕ
e1
1 (α)

πh1

))
> 0.

A1(z) = ρ
1
(z)r1 · · · · · ρrm

m
(z) for some irreducible ρ

i
(z) ∈ K (1 ≤ i ≤ m).

F1 := deg ρ
1

is a divisor of the inertia degree of K (αi ) for 1 ≤ i ≤ F1 · r1
(after reordering the roots α = α1, . . . , αM of Φ(x) if necessary).

As ν
(
ρ1

(
(ϕ1(αi ))e1

πh1

))
> 0 for a lift ρ1(z) of ρ

1
(z) to OK [x ] we have

ν

(
πF1h1ρ1

(
(ϕ1(αi ))e1

πh1

))
> F1h1 ≥

h1

e1
= ν(ϕ1(αi )).

Also deg
(
ρ1(ϕe1

1 /π
h1)
)

= E1F1 ≤ N.

We set ϕ2(x) := πF1h1ρ1

(
(ϕ1(x))e1

πh1

)
. ϕ2(x) is irreducible.
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1st Iteration – Data

ϕ1(x) = x ∈ OK [x ] an approximation to an irreducible factor of Φ(x)

h1/e1 slope of a segment of the Newton polygon of Φ(x) with
gcd(h1, e1) = 1

E1 = e1 the maximum known ramification index

A1(z) the residual polynomial with respect to ϕ1

ρ1(z) ∈ OK [z ] irreducible factor of A1(z) K 1 = K [x ]/((ρ1))

F1 = [K1 : K ] the maximum known inertia degree

Sebastian Pauli (UNC Greensboro) Factoring and Single Factor Lifting 2012 15 / 30



1st Iteration

Let θ(x) =
∑degϕ2−1

i=0 bix
i , that is deg(θ) < deg(ϕ2) = E1 · F1

As the valuations

ν(ϕ1(α)) = ν(α) =
h1

e1
, . . . , ν(ϕ1(α)e1−1) = ν(αe1−1) =

(e1 − 1)h1

e1

are distinct (and not in Z) and

1, ϕ1(α)e1/πh1 ≡ γ1 mod (π), . . . ,
(
ϕ1(α)e1/πh1

)F1−1
≡ γF1−1

1 mod (π)

are linearly independent over OK , we have

ν(θ(α1)) = min
i
ν(bi )

(
h1

e1

)i

.

For H
E1

, H ∈ Z, we can find Ψ(x) ∈ K [x ] such that ν(Ψ(α1)) = H
E1

.
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2nd Iteration – ϕ2-expansion

ϕ2-expansion of Φ(x)

There are unique ai (x) ∈ OK [x ] with deg ai < degϕ2 = n2 such that

Φ(x) =
∑
i≥0

ai (x)(ϕ2(x))i .

For each root α of Φ(x) we have

Φ(α) =
∑
i≥0

ai (α)(ϕ2(α))i = 0

Thus
χ(y) =

∑
i≥0

ai (α)y i

is a polynomial with root ϕ2(α).

The Newton Polygon of χ(y) yields the valuations of ϕ2(α) for all roots α of
Φ(x) with ν(α) = h1

e1
.
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2nd Iteration – Newton Polygon

Newton Polygon of χ(y) =
∑

i≥0 ai (x)y i

with first segment slope − h2

e2
, gcd(h2, e2) = 1

Set E+
2 := e2/ gcd(e2,E1) and E2 := E1 · E+

2
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The Newton polygon of Φ(x) yields the valuations ν(ϕ1(α)) for ϕ1(x) = x for the
roots α of Φ(x).

Here (after reordering the roots of Φ(x) if necessary):

ν(ϕ(α1)) = · · · = ν(ϕ(αM2 )) = h2

e2

E2 is a divisor of the ramification index of K (αi )/K .
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2nd Iteration – Residual Polynomial

Newton Polygon of χ(y) =
∑

i≥0 ai (x)y i

with first segment slope − h2

e2
, gcd(h2, e2) = 1

Set E+
2 := e2/ gcd(e2,E1) and E2 := E1 · E+
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�� Newton Polygon of χ[(y)

Find Π(x) ∈ OK [x ] with ν(Π(α)) = 1
E1

We set

A2(z) :=
∑
j≥0

aje2 (x)Π(x)h1(j−M/e1−e1ν(aM2
(α))z j .

A2(z) is the residual polynomial of Φ(x) with respect to the first segment.
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2nd Iteration – The next ϕ(x)

Let ψ2(x) ∈ OK [x ] with ν(ψ2(α)) =
E+

2 h2

e2
. From

ϕ∗
3(x) := ψ2(x)F

+
1 ρ2

(
ϕ2(x)E

+
2

ψ2(x)

)
=

F+
2∑

i=0

F1−1∑
j=0

ri,j

(
xe1

πh1

)j

ψ2(x)F
+
2 −iϕ2(x)iE

+
2

we construct ϕ3(x) ∈ OK [x ] such that

ν(ϕ∗
3(α)− ϕ3(α) > ν(ϕ∗

3(α)) and

degϕ3 = E2F2 = E+
2 F+

2 E1F1.

using that

ri ,j is congruent to a linear combination of ϕe1
1 /π

h1 ,

ν(ρ1((ϕ1(α)e1/πh1)) > 0, and deg(ρ1(ϕe1
1 /π

h1)) = E1F1
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2nd Iteration – The next ϕ(x)
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2 −iϕ2(x)iE
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ν(ϕ∗
3(α)− ϕ3(α) > ν(ϕ∗

3(α)) and

degϕ3 = E2F2 = E+
2 F+

2 E1F1.

using that

ri ,j is congruent to a linear combination of ϕe1
1 /π

h1 ,

ν(ρ1((ϕ1(α)e1/πh1)) > 0, and deg(ρ1(ϕe1
1 /π

h1)) = E1F1

Remark

ϕ3(x) is irreducible.
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Algorithm

Input: a monic, separable, squarefree polynomial Φ(x) ∈ OK [x ]
Output: an irreducible factor of Φ(x)

t ← 1, ϕ1 ← x , E0 ← 1, F0 ← 1, K 0 ← K .

Repeat:
1 Find the Newton Polygon for ϕt(x)

2 If the length of the first segment is one, lift the factor ϕt(x)
3 Choose a segment of the Newton Polygon, let ht/et be its slope.
4 ht/et ← v∗

Φ(ϕt), E+
t = et

gcd(et ,Et−1) , Et ← Et−1 · E+
t .

5 Find the residual polynomial At(y) of Φ(x) with respect to ϕt(x).
6 Choose an irreducible factor ρ

t
(y) ∈ K t−1 of At(y).

7 F+
t ← deg ρ

t
(y), Ft ← Ft−1 · F+

t , K t ← K t−1[x ]/(ρ
t
).

8 Find ϕt+1(x) ∈ OK [x ] with ν(ϕt+1(α)) > ν(ϕt(α)), degϕt+1 = EtFt .
9 t ← t + 1
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5 Find the residual polynomial At(y) of Φ(x) with respect to ϕt(x).
6 Choose an irreducible factor ρ

t
(y) ∈ K t−1 of At(y).

7 F+
t ← deg ρ

t
(y), Ft ← Ft−1 · F+

t , K t ← K t−1[x ]/(ρ
t
).

8 Find ϕt+1(x) ∈ OK [x ] with ν(ϕt+1(α)) > ν(ϕt(α)), degϕt+1 = EtFt .
9 t ← t + 1
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(t − 1)-st Iteration – Data

ϕt−1(x) ∈ OK [x ] an approximation to an irreducible factor of Φ(x)
with degϕt−1 = Et−2Ft−2

ht−1/et−1 a slope of the Newton Polygon for ϕt−1

E+
t−1 = et−1

gcd(Et−2,et−1) the increase of known ramification index

Et−1 = Et−2 · E+
t−1 the maximal known ramification index

ψt−1 = πsπ
∏t−2

i=1 ϕ
si
i where sπ ∈ Z and 0 ≤ si < E+

i

with v∗
Φ(ψ) = E+

t−1ht−1/et−1

At−1(z) the residual polynomial with respect to ϕt−1

ρ
t−1

(z) ∈ K [z ] an irreducible factor of At−1(z)

K t−1 = K t−2[x ]/((ρt−1)

Ft−1 = lcm(Ft−2, [K t−1 : K ]) the maximum known inertia degree
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t-th Iteration – the (ϕ1, . . . , ϕt−1)-expansion

We compute the ϕt(x)-expansion of Φ(x) in order to find v∗Φ(ϕt).

The (ϕ1, . . . , ϕt−1)-expansion of the coefficients of the expansion yields
the necessary information.

Let a(x) ∈ OK [x ] with deg a < Et−1Ft−1.

(ϕ1, . . . , ϕt−1)-expansion of a(x)

a(x) =

E+
t−1F

+
t−1−1∑

jt−1=0

ϕ
jt−1

t−1(x) · · ·
E+
t−2F

+
t−2−1∑

jt−2=0

ϕj2
2 (x)

E+
1 F+

1 −1∑
j1=0

x j1 · aj1,...,jt−1

Lemma

ν(a(α)) = min 1≤i≤t−1

1≤ji<E+
i

ν
(
ϕ
jt−1

t−1(α) · · ·ϕj2
2 (α) · x j1 · aj1,...,jt−1

)
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Example: Factorization of Φ = x16 + 16 ∈ Q2[x ]

1st Iteration ϕ1 = x

χ1 = Φ = y16 + 16, thus h1/e1 = 1/4, E+
1 = 4 and E1 = 4.

Residual polynomial: A1 = z4 + 1 = (z + 1)4 ∈ F2[z ], hence F1 = 1.

ψ1 = 2, such that ν(ψ1) = ν(ϕ
E+

1
1 ) and deg(ψ1) < E1F1
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Example: Factorization of Φ = x16 + 16 ∈ Q2[x ]

1st Iteration ϕ1 = x

χ1 = Φ = y16 + 16, thus h1/e1 = 1/4, E+
1 = 4 and E1 = 4.

Residual polynomial: A1 = z4 + 1 = (z + 1)4 ∈ F2[z ], hence F1 = 1.

ψ1 = 2, such that ν(ψ1) = ν(ϕ
E+

1
1 ) and deg(ψ1) < E1F1

2nd Iteration ϕ2 = ϕe1
1 − ψ1 = x4 − 2

Φ = 32 + ϕ2(32 + ϕ2(24 + ϕ2(8 + ϕ2)))
χ2 = y4 + 8y3 + 24y2 + 32y + 32, thus h2/e2 = 5/4, E+

2 = 1 and E2 = 4.
Residual polynomial: A2 = z4 + 1 = (z + 1)4 ∈ F2[z ], hence F2 = 1.

ψ2 = 2ϕ1, such that ν(ψ
E+

2
2 ) = ν(ϕ1) and deg(ψ2) < E2F2
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Example: Factorization of Φ = x16 + 16 ∈ Q2[x ]

1st Iteration ϕ1 = x

χ1 = Φ = y16 + 16, thus h1/e1 = 1/4, E+
1 = 4 and E1 = 4.

Residual polynomial: A1 = z4 + 1 = (z + 1)4 ∈ F2[z ], hence F1 = 1.

ψ1 = 2, such that ν(ψ1) = ν(ϕ
E+

1
1 ) and deg(ψ1) < E1F1

2nd Iteration ϕ2 = ϕe1
1 − ψ1 = x4 − 2

Φ = 32 + ϕ2(32 + ϕ2(24 + ϕ2(8 + ϕ2)))
χ2 = y4 + 8y3 + 24y2 + 32y + 32, thus h2/e2 = 5/4, E+

2 = 1 and E2 = 4.
Residual polynomial: A2 = z4 + 1 = (z + 1)4 ∈ F2[z ], hence F2 = 1.

ψ2 = 2ϕ1, such that ν(ψ
E+

2
2 ) = ν(ϕ1) and deg(ψ2) < E2F2

3rd Iteration ϕ3 = ϕ2 − 2ϕ1(x) = x4 − 2x + 2

Φ =−64x3+96x2−32x+ϕ3(32x3−96x2+96x−16+ϕ3(24x2−48x+24+ϕ3(8x−8 +ϕ3))).

χ3 =−64x3+96x2−32x+ (32x3−96x2+96x−16)y + (24x2−48x+24)y 2 + (8x−8)y 3 + y 4.

The valuations of the coefficients are 21/4, 4, 3, 3 and 0, hence h3/e3 = 21/16.

It follows that Φ is irreducible.Sebastian Pauli (UNC Greensboro) Factoring and Single Factor Lifting 2012 23 / 30



Good Approximations

Consider the ϕt-expanson of Φ(x) =
∑

i≥0 ai (x)ϕi
t(x). If the first segment of the

newton polygon has length one ϕt(x) is an approximation to a unique factor of
degree deg(ϕt). ϕt(x) is called a good approximation.

Newton Polygon of χ(y) =
∑

i≥0 ai (x)y i

with first segment of length 1 and slope ν (ϕt(α))

-i

6

ν(ai )

B
B
B
B
B
BBν(a1) r̀ ```````̀

ν(a0) r

0

r

1

r
v(a1(α)ϕ(α)) < v(ai (α)ϕt(α)i ) for 2 ≤ i

We have 0 = Φ(α) =
∑
i≥0

ai (α)ϕi
t(α), so a1(α)ϕt(α) + a0(α) = −

∑
i≥2

ai (α)ϕi
t(α).

ν

(
ϕt(α) +

a0(α)

a1(α)

)
= ν

(∑
i≥2 ai (α)ϕi

t(α)

a1(α)

)
.
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Single Factor Lifting Idea

Assume the first segment of the newton polygon for ϕt(x) has length one,
then ϕt(x) is an approximation to a unique factor P(x) of Φ(x).

We have

ϕt(α) +
a0(α)

a1(α)
= −

∑
2≤s as(α)ϕt(α)s

a1(α)
.

Now

v

(
ϕt(α) +

a0(α)

a1(α)

)
= v

(∑
2≤s as(α)ϕt(α)s

a1(α)

)
> v (ϕt(α)) .

Find a−1
1 (x) ∈ K [x ] with a1(x)a−1

1 (x) ≡ 1 mod ϕt(x).
For ϕ∗(x) := ϕt(x) + A(x) where A(x) ≡ a0(x)a−1

1 (x) mod ϕt(x), with
degA < degϕt , we get

v(ϕ∗(α)) = v(ϕt(α) + A(α)) > v(ϕt(α))

So ϕ∗(x) is a better approximation to the irreducible factor P(x).
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Single Factor Lifting Convergence

Theorem

Let ϕt be a good approximation to an irreducible factor P(x) of Φ(x) and
let α be a root of P(x). Let Φ(x) =

∑
i≥0 ai (x)ϕi

t(x) nbe the

ϕt-expansion of Φ(x). Let a−1
1 (x) ∈ K [x ] with a1(x)a−1

1 (x) ≡ 1
mod ϕt(x) and A(x) ∈ OK [x ] with A(x) ≡ a0(x)a−1

1 (x) mod ϕt(x)
Then

v(ϕt(α) + A(α)) ≥ 2v(ϕt(α)).
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Single Factor Lifting Algorithm

Input: a good approximation ϕ(x) to an irreducible factor P(x) of Φ(x)
Output: a lift of ϕ(x) to a given precision ν ∈ N

(1) a, a0 ← quotrem(f , ϕ), a1 ← a mod ϕ

(2) hϕ ← w(a0)− w(a1ϕ)

(3) Find Ψ ∈ K [x ] with deg Ψ < degϕ and v(Ψ(α)) = −v(a1(α))

(4) A0 ← Ψa0 mod ϕ, A1 ← Ψa1 mod ϕ

(5) Find A−1
1 ∈ K [x ] with v

(
(A−1

1 A1 mod ϕ(α))− 1
)
> 0

(6) s ← 1

(7) while s < hϕ: (Newton inversion)

(a) A−1
1 ← A−1

1 (2− A1A
−1
1 ) mod ϕ

(b) s ← 2s

(8) A← A0A
−1
1 mod ϕ, Φ← ϕ+ A, C−1

1 ← A−1
1

(9) h← 2hϕ
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Single Factor Lifting Algorithm

(10) while h < e(ν − ν0): (The main loop)

(a) c , c0 ← quotrem(f ,Φ), c1 ← c mod Φ
(b) C0 ← Ψc0 mod Φ, C1 ← Ψc1 mod Φ
(c) C−1

1 ← C−1
1 (2− C1C

−1
1 ) mod Φ

(d) C ← C0C
−1
1 mod Φ

(e) Φ← Φ + C
(f) h← 2h

(11) return Φ

where ν0 :=
h1

e1
+

h2

e1e2
+ · · ·+ hr

e1 · · · er
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Applications

Assume that the first segment of the Newton Polygon for ϕt(x) has length
one. Let α be a root of Φ(x) that corresponds to this segment.

Uniformizers

There are sπ ∈ Z and s1, . . . , st ∈ N with 0 ≤ si ≤ E+
i such that

ν(Π(α)) = 1
Et

for

Π(x) = πsπϕ1(x)s1 · · · · · ϕst
t ∈ K [x ].

Splitting Extensions into Unramified and Ramified Part

Let L/K be unramified of degree Ft and g(y) be factor of

χΠ(y) = resx(Φ(x), y − Π(x))

over L. Then
K (α) ∼= L(Π(α)) ∼= L[y ]/(g(y))

where L[y ]/(g(y)) over L is totally ramified of degree Et .
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Applications

Assume that the first segment of the Newton Polygon for ϕt(x) has length
one. Let α be a root of Φ(x) that corresponds to this segment and let
P(x) ∈ OK [x ] be the corresponding irreducible factor of Φ(x).

Two Element Certificates

There are rπ ∈ Z and r1, . . . , rt ∈ N with 0 ≤ ri ≤ E+
i F+

i such that
[K (Γ(α)) : K ] = Ft for

Γ(x) = πrπϕ1(x)r1 · · · · · ϕrt
t ∈ K [x ].

Γ(x) and Π(x) with [K (Γ(α)) : K ] = Ft and ν(Π(α)) = 1
Et

are a certificate
for the irreducibility of P(x) with deg(P) = Et · Ft .

Integral Basis {
Γ(α)iΠ(α)j | 0 ≤ i < FΓ, 0 ≤ j < EΠ

}
is an integral basis of K (α).
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