Upcoming *p*-adic functionality in FLINT

Sebastian Pancratz

p-adic Sage Days, San Diego, 19-23 February 2012

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Overview

- Motivation
- Design decisions
- Field of *p*-adic numbers Q_p
 - Elements of \mathbf{Q}_p
 - Addition, multiplication, inversion, square root, exponential, logarithm, Teichmüller lift

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Polynomials over \mathbf{Q}_p
- Unramified extensions \mathbf{Q}_q
 - Elements of \mathbf{Q}_q
 - Addition, multiplication, inversion, Teichmüller lift, Frobenius
- Summary of timings

Motivation

Motivation for the implementation.

► I need *p*-adic arithmetic for my own research code in point counting, which is largely based on FLINT.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Purpose of the talk.

- Present the already implemented functionality;
- Offer comparisons between Sage, Magma, and FLINT;
- Ask for feedback.

Design decisions

Comparison with Laurent series over \mathbf{F}_p .

A Laurent series consists of the data $(m, n, (a_m, \ldots, a_n))$ giving

Given f(X) and g(X), we can compute their sum modulo X^N as

$$f(X) + g(X) = \sum_{i=\min\{m_f, m_g\}}^{\min\{\max\{n_f, n_g\}, N-1\}} (a_i + b_i) X^i$$

As coefficients are readily available, it is reasonable for operations to treat inputs as exact and require only the output precision N.

Design decisions

Decision.

► Each *p*-adic operation treats the input as exact data and requires the desired output precision as a separate argument.

Rationale.

- A number is *just* a number.
- ► The intrinsic difficulty in *p*-adic arithmetic stems from the precision loss, which depends on the particular operation.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Note that it would be straightforward to implement various precision models on top of this.

Elements of \mathbf{Q}_p

Consider two numbers,

$$x = 3 + 2 \times 5 + 1 \times 5^{2} + 4 \times 5^{3}$$
$$y = 1 + 1 \times 5 + 4 \times 5^{2} + 2 \times 5^{3} + 3 \times 5^{4}$$

We can compute their sum modulo 5^2 ,

$$x + y = (3 + 1) + (2 + 1)5$$

without looking at higher order digits. But this is *not* what is happening in practical implementations. The *p*-adic digits are not readily available, and for $p \ll 2^{64}$ this is certainly not desirable anyway.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Elements of \mathbf{Q}_p

Instead, an element $x \neq 0$ is typically stored as $x = p^v u$ with $v = \operatorname{ord}_p(x) \in \mathbb{Z}$ and $u \in \mathbb{Z}$ with $p \nmid u$. In FLINT, we choose typedef struct {
 fmpz u;
 long v;
} padic_struct;

Remark

- Improved maintainability by having one data type; no special case depending on the size of p or p^N;
- Eventually, p = 2 should have a special case.
- ▶ One *could* consider a different implementation performing basic arithmetic to base p^k with k s.t. such that p^k fits in a word. This would allow replacing mod p^N operations by mod p^k operations (with a precomputed word-sized inverse) in many algorithms.

Benchmarks for \mathbf{Q}_p

We present some timings for arithmetic in $\mathbf{Q}_p \mod p^N$ where p = 17, $N = 2^i$, $i = 0, \ldots, 10$, comparing the three systems Magma (V2.17-13), Sage (4.8 incl. #4821) and FLINT (2.3) on a machine with Intel Xeon CPUs running at 2.93GHz.

To avoid worrying about taking the same random sequences of elements, we instead fix elements $a = 3^{3N}$, $b = 5^{2N}$, $c = 17^2 b$, and d = 1 - c modulo p^N .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

We consider the following operations:

- Addition
- Multiplication
- Inversion
- Square root
- Teichmüller lift
- Exponential
- Logarithm

Hensel lifting

Theorem

Let $g \in \mathbf{Z}_q[X]$ and assume that $x_0 \in \mathbf{Z}_q$ satisfies

$$\operatorname{ord}_p(g(x_0))) = m + n, \quad \operatorname{ord}_p(g'(x_0)) = m,$$

for some $0 \le m < n$. There exists a unique root $x \in \mathbf{Z}_q$ of g satisfying $x \equiv x_0$ modulo p^n .

Algorithm

- Compute sequence $e_k = N, e_{k-1} = \lceil e_k/2 \rceil, \ldots, e_0$ until $1 \le e_0 \le n$.
- For $i = 0, \ldots, k 1$, compute

$$x_{i+1} = x_i - \frac{g(x_i)}{g'(x_i)} \pmod{p^{e_{i+1}}}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Hensel lifting

Remark

In the above formulation, Hensel lifting requires a nested lifting process to compute the *p*-adic inverse of $g'(x_i)$ in each step. This can be replaced by a single parallel Hensel lift:

- Compute sequence $e_k = N$, $e_{k-1} = \lceil e_k/2 \rceil$, ..., e_0 until $1 \le e_0 \le n$.
- Set $y_0 = g'(x_0)^{-1} \mod p$.
- For $i = 0, \ldots, k 1$, compute

$$\begin{aligned} x_{i+1} &= x_i - g(x_i)y_i & (\text{mod } p^{e_{i+1}}), \\ y_{i+1} &= y_i \big(2 - y_i g'(x_{i+1})\big) & (\text{mod } p^{e_{i+1}}). \end{aligned}$$

Addition

Signature

void padic_add(z, x, y, ctx)

Contract

Assumes that x and y are reduced modulo p^{N} and returns z in reduced form, too.

Algorithm

Avoids expensive modulo operation, replacing this by one comparison and at most one subtraction.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Addition (equal valuation)

Computes $a + b \mod p^N$.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Addition (distinct valuation)

Computes $a + c \mod p^N$.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Multiplication

Signature

```
void padic_mul(z, x, y, ctx)
```

Contract

Makes no assumptions on x and y, returns z reduced modulo p^N .

Multiplication

Computes $ab \mod p^N$.

Inversion

Signature

void padic_inv(z, x, ctx)

Contract

Makes no assumptions on $x \neq 0$, returns z reduced modulo p^N .

Algorithm

Hensel lifting on g(X) = xX - 1, starting from an inverse in \mathbf{F}_p and using the update formula z' = z + z(1 - xz).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Inversion

Computes $a^{-1} \mod p^N$ to the required precision N.

Square root

Signature

```
int padic_sqrt(z, x, ctx)
```

Contract

Returns whether x has a square root, and if this is the case sets z to a square root modulo $p^{N}. \label{eq:prod}$

Recall that non-zero $x = p^v u$ has a square root if and only if v is even and u has a square root modulo 8 or p where p = 2 or p > 2, respectively.

Algorithm

▶ Compute $x^{-1/2} \mod p^N$ using Hensel lifting on $g(X) = x^2 X - 1$, starting modulo p and using the division-free update formula

$$z' = z - z(xz^2 - 1)/2.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Set $z = xx^{-1/2} \mod p^N$.

Square root

Computes a square root of a to the required precision N.

Teichmüller lift

Signature

void padic_teichmuller(z, x, ctx)

Contract

Assumes only that $\operatorname{ord}_p(x) = 0$, returns the unique z such that $z \equiv x \pmod{p}$ and $z \equiv x \pmod{p}$ and $z^p - z = 0$, reduced modulo p^N .

Algorithm

Hensel lifting on $g(X) = X^p - X$, starting from $z_0 = x \mod p$.

Improvements

- Hensel lifting without inverses.
- At the first step, we want $z_0 = x \mod p$ and $y_0 = ((p-1)x^{p-2})^{-1} \mod p$, so $y_0 = p z_0$ without inversion.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Teichmüller lift

Computes the Teichmüller lift of $a \mod p^N$ to the required precision N.

Exponential

Signature

int padic_exp(z, x, ctx)

Contract

Returns whether $\exp_p(x)$ converges, that is, $\operatorname{ord}_p(x) \ge 2$ or $\operatorname{ord}_p(x) \ge 1$ as p = 2 or p > 2, respectively, and computes z reduced modulo p^N .

Algorithm

Evaluates the truncated series

$$\exp_p(x) = \sum_{i=0}^{m-1} \frac{x^i}{i!}$$

over \mathbf{Z}_p by multiplying through by (m-1)!, hence requiring only one *p*-adic inversion. We can choose $m = \left\lceil ((p-1)N - 1)/((p-1)v - 1) \right\rceil$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Exponential

Improvements

Rectangular splitting algorithm, starting from the expression

$$\exp_p(x) = \sum_{j=0}^{\lceil m/B \rceil - 1} \left(\sum_{i=0}^{B-1} \frac{x^i}{(i+Bj)!} \right) x^{Bj}$$

where $B = \lfloor \sqrt{m} \rfloor$.

Asymptotic improvements possible, e.g. using a binary splitting algorithm, which recursively considers half the coefficients of the series.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Exponential

Computes the exponential of c to the required precision N.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Logarithm

Signature

int padic_log(z, x, ctx)

Contract

Assumes that $\log_p(x)$ converges, that is, $\operatorname{ord}_p(x-1) \ge 2$ or $\operatorname{ord}_p(x-1) \ge 1$ as p = 2 or p > 2, respectively, and returns z reduced modulo p^N .

Algorithm

Evaluates the truncated series

$$\log_p(x) = \sum_{i=1}^m (-1)^{i-1} \frac{(x-1)^i}{i}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

over \mathbf{Z}_p by inverting i at each step using a precomputed Hensel lifting structure.

Logarithm

Computes the logarithm of d = 1 - c to the required precision N.

Polynomials over \mathbf{Q}_p

We represent a non-zero polynomial $f(X) \in \mathbf{Q}_p[X]$ as

$$f(X) = p^{\nu} \left(a_0 + a_1 X + \dots + a_n X^n \right)$$

where $a_0, \ldots, a_n \in \mathbf{Z}$ and, for at least one *i*, *p* does not divide a_i .

Remark

- ▶ Allows for transfer of many problems over \mathbf{Q}_p to $\mathbf{Z}/(p^N)$, where fast implementations are available.
- Similar to the approach chosen over Q in FLINT (and Sage), see trac ticket #4000.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Functions for $\mathbf{Q}_p[X]$

 \blacktriangleright Conversions to polynomials over ${\bf Z}$ and ${\bf Q}$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

- Coefficient manipulation
- Addition, subtraction, negation
- Scalar multiplication
- Multiplication
- Powers
- Series inversion
- Derivative
- Evaluation
- Composition

Unramified extensions \mathbf{Q}_q

We represent an unramified extension of \mathbf{Q}_p as

$$\mathbf{Q}_q \cong \mathbf{Q}_p[X]/(f(X))$$

where $f(X) \mod p$ is separable, storing f(X) in a data structure for sparse polynomials.

This allows for the reduction of a degree n polynomial modulo f(X) in linear time $\mathcal{O}(n).$

Benchmarks for \mathbf{Q}_q

We present some timings for arithmetic in $\mathbf{Q}_q \mod p^N$ where $q = 5^{251}$ and $N = 2^i$, $i = 0, \ldots, 10$, comparing the three systems Magma (V2.17-13), Sage (4.8 incl. #4821) and FLINT (2.3) on a machine with Intel Xeon CPUs running at 2.93GHz.

To avoid worrying about taking the same random sequences of elements, we instead fix elements $a = (X + 1)^N$, $b = (X^2 + 2)^N$, and $c = 5^2 b$ modulo p^N .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

We consider the following operations:

- Addition
- Multiplication
- Inversion
- Teichmüller lift
- Frobenius

Addition

Signature

```
void qadic_add(z, x, y, ctx)
```

Contract

Sets $z = x + y \mod p^N$, assuming both x and y are reduced modulo p^N .

Algorithm

Avoids expensive modulo operation on the coefficients, replacing this by one comparison and at most one subtraction per coefficient.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Addition (equal valuation)

Computes the sum a + b to the required precision N.

ヘロト 人間 ト 人 ヨト 人 ヨト

æ

Addition (distinct valuation)

Computes the sum a + b to the required precision N.

ヘロト 人間 ト 人 ヨト 人 ヨト

æ

Multiplication

Signature

void qadic_mul(z, x, y, ctx)

Contract

Sets $z = xy \mod p^N$, without assuming that x, y are reduced modulo p^N .

Algorithm

First compute the product of the polynomials, then reduce the result modulo $p^{N} \mbox{ and } f(X).$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Multiplication

Computes the product ab to the required precision N.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Inversion

Signature

```
void qadic_inv(z, x, ctx)
```

Contract

Sets z to the inverse of $x \neq 0$ modulo p^N .

Algorithm

Hensel lifting on g(X) = xX + 1, using the update formula z' = z + z(1 - xz); the starting point z_0 is the inverse of x in $\mathbf{F}_p[X]/(f(X))$ computed by a version of Euclid's extended algorithm only updating one cofactor¹.

¹Using Euclid's extended algorithm to compute d, s, t such that d = gcd(a, b) = sa + tb, one improvement is to only update s during the procedure and then construct t = (d - sa)/b. Here, we can omit the last step as we do not need the cofactor of f(X).

Inversion

Computes the inverse of a to the required precision N.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Teichmüller lift

Signature

void qadic_teichmuller(z, x, ctx)

Contract

Assumes only that $\operatorname{ord}_p(x) = 0$, returns the unique q such that $z^q - z = 0$ reduced modulo p^N .

Algorithm

Hensel lifting on $g(X) = X^q - X$, starting from $z_0 = x \mod p$.

Improvements

Observe that $g'(z_i) = qz_i^{q-1} - 1$ and z_i^{q-1} is close to 1 so $g'(z_i)$ is close to q-1. Thus, we only need to compute an inverse of q-1, which is defined over \mathbf{Q}_p .

Teichmüller lift

Computes the Teichmüller lift of a to the required precision N.

Frobenius

Signature

void qadic_frobenius(z, x, k, ctx)

Contract

Sets z to $\Sigma^k x$ modulo p^N , where $\Sigma \in \operatorname{Gal}(\mathbf{Q}_q/\mathbf{Q}_p) \cong \operatorname{Gal}(\mathbf{F}_q/\mathbf{F}_p)$ is the image of $\sigma \colon \mathbf{F}_q \to \mathbf{F}_q, x \mapsto x^p$.

Algorithm

- Write $\mathbf{Q}_q \cong \mathbf{Q}_p[X]/(f(X))$ and $x = \sum_{i=0}^{d-1} a_i X^i$.
- Compute $\Sigma^k X$ using Hensel lifting on f, starting from $z_0 = X^{p^k}$ in $\mathbf{F}_p[X]/(f(X))$.
- Compute $\Sigma^k x = \sum_{i=0}^{d-1} a_i (\Sigma^k X)^i$, which is a polynomial composition modulo p^N and f(X).

Frobenius

Improvements

- ► In a first approach, might use Horner's method to carry out the composition, which uses about d multiplications in Q_q
- Instead, use a rectangular splitting method, starting from the expression

$$x = \sum_{j=0}^{\lceil d/B \rceil - 1} \left(\sum_{i=0}^{B-1} a_{i+Bj} X^i \right) X^{Bj}$$

where $B = \lfloor \sqrt{d} \rfloor$, precomputing $\Sigma^k(X)^i$ for $i = 0, \ldots, B$. This requires about $2\sqrt{d}$ multiplications in \mathbf{Q}_q and extra space for about $d^{3/2}$ elements of $\mathbf{Z}/(p^N)$.

Frobenius

Computes the image of a under the Frobenius homomorphism to the required precision N.

Missing functionality for \mathbf{Q}_q

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Exponential
- Logarithm
- Square root
- Norm
- Trace

Summary of timings

	Operation	$T_{\rm Sage}/T_{\rm FLINT}$	T_{Magma}/T_{FLINT}
\mathbf{Q}_p	a + b	0.67	0.49
-	a + c	1.63	0.91
	ab	0.58	2.41
	a^{-1}	3.94	3.9
	\sqrt{a}		6.17
	Teichmüller(a)	156.19	4670
	$\exp(c)$	206.25	12.25
	$\log(d)$	27.95	3.01
$\overline{\mathbf{Q}_{q}}$	a + b	2.36	1.1
	a + c	6.3	0.82
	ab	8.59	0.62
	a^{-1}	51.47	1.23
	$Teichm\"uller(a)$	9.48	1.03
	$\Sigma(a)$	11000	0.72

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Codebase

- FLINT, http://www.flintlib.org
- Personal development branch for *p*-adic arithmetic, https://github.com/SPancratz/flint2/tree/padic
- Lines of source code,

	padic	<pre>padic_poly</pre>	<pre>padic_poly</pre>	qadic
Base	1987	1460	683	920
Test	2321	1380	903	1131

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00