
Upcoming p-adic functionality in FLINT

Sebastian Pancratz

p-adic Sage Days, San Diego, 19–23 February 2012



Overview
I Motivation

I Design decisions

I Field of p-adic numbers Qp

I Elements of Qp

I Addition, multiplication, inversion, square root, exponential, logarithm,
Teichmüller lift

I Polynomials over Qp

I Unramified extensions Qq

I Elements of Qq

I Addition, multiplication, inversion, Teichmüller lift, Frobenius

I Summary of timings



Motivation

Motivation for the implementation.

I I need p-adic arithmetic for my own research code in point counting,
which is largely based on FLINT.

Purpose of the talk.

I Present the already implemented functionality;

I Offer comparisons between Sage, Magma, and FLINT;

I Ask for feedback.



Design decisions

Comparison with Laurent series over Fp .

A Laurent series consists of the data (m,n, (am , . . . , an)) giving

n∑
i=m

aiX
i

Given f (X ) and g(X ), we can compute their sum modulo XN as

f (X ) + g(X ) =

min{max{nf ,ng},N−1}∑
i=min{mf ,mg}

(ai + bi)X
i

As coefficients are readily available, it is reasonable for operations to treat
inputs as exact and require only the output precision N .



Design decisions

Decision.

I Each p-adic operation treats the input as exact data and requires the
desired output precision as a separate argument.

Rationale.

I A number is just a number.

I The intrinsic difficulty in p-adic arithmetic stems from the precision loss,
which depends on the particular operation.

I Note that it would be straightforward to implement various precision
models on top of this.



Elements of Qp

Consider two numbers,

x = 3 + 2× 5 + 1× 52 + 4× 53

y = 1 + 1× 5 + 4× 52 + 2× 53 + 3× 54

We can compute their sum modulo 52,

x + y = (3 + 1) + (2 + 1)5

without looking at higher order digits. But this is not what is happening in
practical implementations. The p-adic digits are not readily available, and for
p � 264 this is certainly not desirable anyway.



Elements of Qp

Instead, an element x 6= 0 is typically stored as x = pvu with
v = ordp(x ) ∈ Z and u ∈ Z with p - u. In FLINT, we choose

typedef struct {

fmpz u;

long v;

} padic_struct;

Remark

I Improved maintainability by having one data type; no special case
depending on the size of p or pN ;

I Eventually, p = 2 should have a special case.

I One could consider a different implementation performing basic arithmetic
to base pk with k s.t. such that pk fits in a word. This would allow
replacing mod pN operations by mod pk operations (with a precomputed
word-sized inverse) in many algorithms.



Benchmarks for Qp

We present some timings for arithmetic in Qp mod pN where p = 17, N = 2i ,
i = 0, . . . , 10, comparing the three systems Magma (V2.17-13), Sage (4.8 incl.
#4821) and FLINT (2.3) on a machine with Intel Xeon CPUs running at
2.93GHz.

To avoid worrying about taking the same random sequences of elements, we
instead fix elements a = 33N , b = 52N , c = 172b, and d = 1− c modulo pN .

We consider the following operations:

I Addition

I Multiplication

I Inversion

I Square root

I Teichmüller lift

I Exponential

I Logarithm



Hensel lifting

Theorem

Let g ∈ Zq [X ] and assume that x0 ∈ Zq satisfies

ordp(g(x0))) = m + n, ordp(g ′(x0)) = m,

for some 0 ≤ m < n. There exists a unique root x ∈ Zq of g satisfying x ≡ x0
modulo pn .

Algorithm

I Compute sequence ek = N , ek−1 = dek/2e , . . . , e0 until 1 ≤ e0 ≤ n.

I For i = 0, . . . , k − 1, compute

xi+1 = xi −
g(xi)

g ′(xi)
(mod pei+1).



Hensel lifting

Remark

In the above formulation, Hensel lifting requires a nested lifting process to
compute the p-adic inverse of g ′(xi) in each step. This can be replaced by a
single parallel Hensel lift:

I Compute sequence ek = N , ek−1 = dek/2e , . . . , e0 until 1 ≤ e0 ≤ n.

I Set y0 = g ′(x0)−1 mod p.

I For i = 0, . . . , k − 1, compute

xi+1 = xi − g(xi)yi (mod pei+1),

yi+1 = yi
(
2− yig

′(xi+1)
)

(mod pei+1).



Addition

Signature

void padic_add(z, x, y, ctx)

Contract

Assumes that x and y are reduced modulo pN and returns z in reduced form,
too.

Algorithm

Avoids expensive modulo operation, replacing this by one comparison and at
most one subtraction.



Addition (equal valuation)

Computes a + b mod pN .



Addition (distinct valuation)

Computes a + c mod pN .



Multiplication

Signature

void padic_mul(z, x, y, ctx)

Contract

Makes no assumptions on x and y , returns z reduced modulo pN .



Multiplication

Computes ab mod pN .



Inversion

Signature

void padic_inv(z, x, ctx)

Contract

Makes no assumptions on x 6= 0, returns z reduced modulo pN .

Algorithm

Hensel lifting on g(X ) = xX − 1, starting from an inverse in Fp and using the
update formula z ′ = z + z (1− xz ).



Inversion

Computes a−1 mod pN to the required precision N .



Square root

Signature

int padic_sqrt(z, x, ctx)

Contract

Returns whether x has a square root, and if this is the case sets z to a square
root modulo pN .

Recall that non-zero x = pvu has a square root if and only if v is even and u
has a square root modulo 8 or p where p = 2 or p > 2, respectively.

Algorithm

I Compute x−1/2 mod pN using Hensel lifting on g(X ) = x2X − 1,
starting modulo p and using the division-free update formula

z ′ = z − z
(
xz 2 − 1

)
/2.

I Set z = xx−1/2 mod pN .



Square root

Computes a square root of a to the required precision N .



Teichmüller lift

Signature

void padic_teichmuller(z, x, ctx)

Contract

Assumes only that ordp(x ) = 0, returns the unique z such that z ≡ x
(mod p) and z ≡ x (mod p) and zp − z = 0, reduced modulo pN .

Algorithm

Hensel lifting on g(X ) = X p −X , starting from z0 = x mod p.

Improvements

I Hensel lifting without inverses.

I At the first step, we want z0 = x mod p and

y0 =
(
(p − 1)xp−2)−1 mod p, so y0 = p − z0 without inversion.



Teichmüller lift

Computes the Teichmüller lift of a mod pN to the required precision N .



Exponential

Signature

int padic_exp(z, x, ctx)

Contract

Returns whether expp(x ) converges, that is, ordp(x ) ≥ 2 or ordp(x ) ≥ 1 as

p = 2 or p > 2, respectively, and computes z reduced modulo pN .

Algorithm

Evaluates the truncated series

expp(x ) =

m−1∑
i=0

x i

i !

over Zp by multiplying through by (m − 1)!, hence requiring only one p-adic
inversion. We can choose m =

⌈(
(p − 1)N − 1

)
/
(
(p − 1)v − 1

)⌉
.



Exponential

Improvements

I Rectangular splitting algorithm, starting from the expression

expp(x ) =

dm/Be−1∑
j=0

(B−1∑
i=0

x i

(i + Bj )!

)
xBj

where B = b
√
mc.

I Asymptotic improvements possible, e.g. using a binary splitting algorithm,
which recursively considers half the coefficients of the series.



Exponential

Computes the exponential of c to the required precision N .



Logarithm

Signature

int padic_log(z, x, ctx)

Contract

Assumes that logp(x ) converges, that is, ordp(x − 1) ≥ 2 or ordp(x − 1) ≥ 1

as p = 2 or p > 2, respectively, and returns z reduced modulo pN .

Algorithm

Evaluates the truncated series

logp(x ) =

m∑
i=1

(−1)i−1
(x − 1)i

i

over Zp by inverting i at each step using a precomputed Hensel lifting
structure.



Logarithm

Computes the logarithm of d = 1− c to the required precision N .



Polynomials over Qp

We represent a non-zero polynomial f (X ) ∈ Qp [X ] as

f (X ) = pv
(
a0 + a1X + · · ·+ anX

n
)

where a0, . . . , an ∈ Z and, for at least one i , p does not divide ai .

Remark

I Allows for transfer of many problems over Qp to Z/(pN ), where fast
implementations are available.

I Similar to the approach chosen over Q in FLINT (and Sage), see trac
ticket #4000.



Functions for Qp[X ]
I Conversions to polynomials over Z and Q

I Coefficient manipulation

I Addition, subtraction, negation

I Scalar multiplication

I Multiplication

I Powers

I Series inversion

I Derivative

I Evaluation

I Composition



Unramified extensions Qq

We represent an unramified extension of Qp as

Qq
∼= Qp [X ]/(f (X ))

where f (X ) mod p is separable, storing f (X ) in a data structure for sparse
polynomials.

This allows for the reduction of a degree n polynomial modulo f (X ) in linear
time O(n).



Benchmarks for Qq

We present some timings for arithmetic in Qq mod pN where q = 5251 and
N = 2i , i = 0, . . . , 10, comparing the three systems Magma (V2.17-13), Sage
(4.8 incl. #4821) and FLINT (2.3) on a machine with Intel Xeon CPUs
running at 2.93GHz.

To avoid worrying about taking the same random sequences of elements, we
instead fix elements a = (X + 1)N , b = (X 2 + 2)N , and c = 52b modulo pN .

We consider the following operations:

I Addition

I Multiplication

I Inversion

I Teichmüller lift

I Frobenius



Addition

Signature

void qadic_add(z, x, y, ctx)

Contract

Sets z = x + y mod pN , assuming both x and y are reduced modulo pN .

Algorithm

Avoids expensive modulo operation on the coefficients, replacing this by one
comparison and at most one subtraction per coefficient.



Addition (equal valuation)

Computes the sum a + b to the required precision N .



Addition (distinct valuation)

Computes the sum a + b to the required precision N .



Multiplication

Signature

void qadic_mul(z, x, y, ctx)

Contract

Sets z = xy mod pN , without assuming that x , y are reduced modulo pN .

Algorithm

First compute the product of the polynomials, then reduce the result modulo
pN and f (X ).



Multiplication

Computes the product ab to the required precision N .



Inversion

Signature

void qadic_inv(z, x, ctx)

Contract

Sets z to the inverse of x 6= 0 modulo pN .

Algorithm

Hensel lifting on g(X ) = xX + 1, using the update formula z ′ = z + z (1− xz );
the starting point z0 is the inverse of x in Fp [X ]/(f (X )) computed by a
version of Euclid’s extended algorithm only updating one cofactor1.

1Using Euclid’s extended algorithm to compute d , s, t such that d = gcd(a, b) = sa + tb,
one improvement is to only update s during the procedure and then construct
t = (d − sa)/b. Here, we can omit the last step as we do not need the cofactor of f (X ).



Inversion

Computes the inverse of a to the required precision N .



Teichmüller lift

Signature

void qadic_teichmuller(z, x, ctx)

Contract

Assumes only that ordp(x ) = 0, returns the unique q such that z q − z = 0
reduced modulo pN .

Algorithm

Hensel lifting on g(X ) = X q −X , starting from z0 = x mod p.

Improvements

Observe that g ′(zi) = qz q−1i − 1 and z q−1i is close to 1 so g ′(zi) is close to
q − 1. Thus, we only need to compute an inverse of q − 1, which is defined
over Qp .



Teichmüller lift

Computes the Teichmüller lift of a to the required precision N .



Frobenius

Signature

void qadic_frobenius(z, x, k, ctx)

Contract

Sets z to Σkx modulo pN , where Σ ∈ Gal(Qq/Qp) ∼= Gal(Fq/Fp) is the
image of σ : Fq → Fq , x 7→ xp .

Algorithm

I Write Qq
∼= Qp [X ]/(f (X )) and x =

∑d−1
i=0 aiX

i .

I Compute ΣkX using Hensel lifting on f , starting from z0 = X pk

in
Fp [X ]/(f (X )).

I Compute Σkx =
∑d−1

i=0 ai
(
ΣkX

)i
, which is a polynomial composition

modulo pN and f (X ).



Frobenius

Improvements

I In a first approach, might use Horner’s method to carry out the
composition, which uses about d multiplications in Qq

I Instead, use a rectangular splitting method, starting from the expression

x =

dd/Be−1∑
j=0

(B−1∑
i=0

ai+BjX
i

)
XBj

where B = b
√
dc, precomputing Σk (X )i for i = 0, . . . ,B . This requires

about 2
√
d multiplications in Qq and extra space for about d3/2 elements

of Z/(pN ).



Frobenius

Computes the image of a under the Frobenius homomorphism to the required
precision N .



Missing functionality for Qq

I Exponential

I Logarithm

I Square root

I Norm

I Trace



Summary of timings

Operation TSage/TFLINT TMagma/TFLINT

Qp a + b 0.67 0.49
a + c 1.63 0.91
ab 0.58 2.41
a−1 3.94 3.9√
a 6.17

Teichmüller(a) 156.19 4670
exp(c) 206.25 12.25
log(d) 27.95 3.01

Qq a + b 2.36 1.1
a + c 6.3 0.82
ab 8.59 0.62
a−1 51.47 1.23
Teichmüller(a) 9.48 1.03
Σ(a) 11000 0.72



Codebase
I FLINT,

http://www.flintlib.org

I Personal development branch for p-adic arithmetic,
https://github.com/SPancratz/flint2/tree/padic

I Lines of source code,

padic padic_poly padic_poly qadic

Base 1987 1460 683 920
Test 2321 1380 903 1131

http://www.flintlib.org
https://github.com/SPancratz/flint2/tree/padic

