Upcoming p-adic functionality in FLINT

Sebastian Pancratz

p-adic Sage Days, San Diego, 19-23 February 2012

Overview

- Motivation
- Design decisions
- Field of p-adic numbers \mathbf{Q}_{p}
- Elements of \mathbf{Q}_{p}
- Addition, multiplication, inversion, square root, exponential, logarithm, Teichmüller lift
- Polynomials over \mathbf{Q}_{p}
- Unramified extensions \mathbf{Q}_{q}
- Elements of \mathbf{Q}_{q}
- Addition, multiplication, inversion, Teichmüller lift, Frobenius
- Summary of timings

Motivation

Motivation for the implementation.

- I need p-adic arithmetic for my own research code in point counting, which is largely based on FLINT.

Purpose of the talk.

- Present the already implemented functionality;
- Offer comparisons between Sage, Magma, and FLINT;
- Ask for feedback.

Design decisions

Comparison with Laurent series over \mathbf{F}_{p}.
A Laurent series consists of the data $\left(m, n,\left(a_{m}, \ldots, a_{n}\right)\right)$ giving

$$
\sum_{i=m}^{n} a_{i} X^{i}
$$

Given $f(X)$ and $g(X)$, we can compute their sum modulo X^{N} as

$$
f(X)+g(X)=\sum_{i=\min \left\{m_{f}, m_{g}\right\}}^{\min \left\{\max \left\{n_{f}, n_{g}\right\}, N-1\right\}}\left(a_{i}+b_{i}\right) X^{i}
$$

As coefficients are readily available, it is reasonable for operations to treat inputs as exact and require only the output precision N.

Design decisions

Decision.

- Each p-adic operation treats the input as exact data and requires the desired output precision as a separate argument.

Rationale.

- A number is just a number.
- The intrinsic difficulty in p-adic arithmetic stems from the precision loss, which depends on the particular operation.
- Note that it would be straightforward to implement various precision models on top of this.

Elements of \mathbf{Q}_{p}

Consider two numbers,

$$
\begin{aligned}
& x=3+2 \times 5+1 \times 5^{2}+4 \times 5^{3} \\
& y=1+1 \times 5+4 \times 5^{2}+2 \times 5^{3}+3 \times 5^{4}
\end{aligned}
$$

We can compute their sum modulo 5^{2},

$$
x+y=(3+1)+(2+1) 5
$$

without looking at higher order digits. But this is not what is happening in practical implementations. The p-adic digits are not readily available, and for $p \ll 2^{64}$ this is certainly not desirable anyway.

Elements of \mathbf{Q}_{p}

Instead, an element $x \neq 0$ is typically stored as $x=p^{v} u$ with $v=\operatorname{ord}_{p}(x) \in \mathbf{Z}$ and $u \in \mathbf{Z}$ with $p \nmid u$. In FLINT, we choose
typedef struct \{
fmpz u;
long v;
\} padic_struct;

Remark

- Improved maintainability by having one data type; no special case depending on the size of p or p^{N};
- Eventually, $p=2$ should have a special case.
- One could consider a different implementation performing basic arithmetic to base p^{k} with k s.t. such that p^{k} fits in a word. This would allow replacing $\bmod p^{N}$ operations by $\bmod p^{k}$ operations (with a precomputed word-sized inverse) in many algorithms.

Benchmarks for \mathbf{Q}_{p}

We present some timings for arithmetic in $\mathbf{Q}_{p} \bmod p^{N}$ where $p=17, N=2^{i}$, $i=0, \ldots, 10$, comparing the three systems Magma (V2.17-13), Sage (4.8 incl. \#4821) and FLINT (2.3) on a machine with Intel Xeon CPUs running at 2.93 GHz .

To avoid worrying about taking the same random sequences of elements, we instead fix elements $a=3^{3 N}, b=5^{2 N}, c=17^{2} b$, and $d=1-c$ modulo p^{N}.

We consider the following operations:

- Addition
- Multiplication
- Inversion
- Square root
- Teichmüller lift
- Exponential
- Logarithm

Hensel lifting

Theorem

Let $g \in \mathbf{Z}_{q}[X]$ and assume that $x_{0} \in \mathbf{Z}_{q}$ satisfies

$$
\left.\operatorname{ord}_{p}\left(g\left(x_{0}\right)\right)\right)=m+n, \quad \operatorname{ord}_{p}\left(g^{\prime}\left(x_{0}\right)\right)=m,
$$

for some $0 \leq m<n$. There exists a unique root $x \in \mathbf{Z}_{q}$ of g satisfying $x \equiv x_{0}$ modulo p^{n}.

Algorithm

- Compute sequence $e_{k}=N, e_{k-1}=\left\lceil e_{k} / 2\right\rceil, \ldots, e_{0}$ until $1 \leq e_{0} \leq n$.
- For $i=0, \ldots, k-1$, compute

$$
x_{i+1}=x_{i}-\frac{g\left(x_{i}\right)}{g^{\prime}\left(x_{i}\right)} \quad\left(\bmod p^{e_{i+1}}\right)
$$

Hensel lifting

Remark

In the above formulation, Hensel lifting requires a nested lifting process to compute the p-adic inverse of $g^{\prime}\left(x_{i}\right)$ in each step. This can be replaced by a single parallel Hensel lift:

- Compute sequence $e_{k}=N, e_{k-1}=\left\lceil e_{k} / 2\right\rceil, \ldots, e_{0}$ until $1 \leq e_{0} \leq n$.
- Set $y_{0}=g^{\prime}\left(x_{0}\right)^{-1} \bmod p$.
- For $i=0, \ldots, k-1$, compute

$$
\begin{array}{ll}
x_{i+1}=x_{i}-g\left(x_{i}\right) y_{i} & \left(\bmod p^{e_{i+1}}\right) \\
y_{i+1}=y_{i}\left(2-y_{i} g^{\prime}\left(x_{i+1}\right)\right) & \left(\bmod p^{e_{i+1}}\right)
\end{array}
$$

Addition

Signature

void padic_add(z, x, y, ctx)
Contract
Assumes that x and y are reduced modulo p^{N} and returns z in reduced form, too.

Algorithm

Avoids expensive modulo operation, replacing this by one comparison and at most one subtraction.

Addition (equal valuation)

Computes $a+b \bmod p^{N}$.
$\log T$, with T in $n s$

Addition (distinct valuation)

Computes $a+c \bmod p^{N}$.

Multiplication

Signature void padic_mul(z, x, y, ctx)

Contract
Makes no assumptions on x and y, returns z reduced modulo p^{N}.

Multiplication

Computes $a b \bmod p^{N}$.
$\log T$, with T in $n s$

Inversion

Signature
void padic_inv(z, x, ctx)
Contract
Makes no assumptions on $x \neq 0$, returns z reduced modulo p^{N}.
Algorithm
Hensel lifting on $g(X)=x X-1$, starting from an inverse in \mathbf{F}_{p} and using the update formula $z^{\prime}=z+z(1-x z)$.

Inversion

Computes $a^{-1} \bmod p^{N}$ to the required precision N.

Square root

Signature

int padic_sqrt(z, x, ctx)

Contract

Returns whether x has a square root, and if this is the case sets z to a square root modulo p^{N}.

Recall that non-zero $x=p^{v} u$ has a square root if and only if v is even and u has a square root modulo 8 or p where $p=2$ or $p>2$, respectively.

Algorithm

- Compute $x^{-1 / 2} \bmod p^{N}$ using Hensel lifting on $g(X)=x^{2} X-1$, starting modulo p and using the division-free update formula

$$
z^{\prime}=z-z\left(x z^{2}-1\right) / 2 .
$$

- Set $z=x x^{-1 / 2} \bmod p^{N}$.

Square root

Computes a square root of a to the required precision N.

Teichmüller lift

Signature

void padic_teichmuller(z, x, ctx)

Contract

Assumes only that $\operatorname{ord}_{p}(x)=0$, returns the unique z such that $z \equiv x$ $(\bmod p)$ and $z \equiv x(\bmod p)$ and $z^{p}-z=0$, reduced modulo p^{N}.

Algorithm

Hensel lifting on $g(X)=X^{p}-X$, starting from $z_{0}=x \bmod p$.
Improvements

- Hensel lifting without inverses.
- At the first step, we want $z_{0}=x \bmod p$ and $y_{0}=\left((p-1) x^{p-2}\right)^{-1} \bmod p$, so $y_{0}=p-z_{0}$ without inversion.

Teichmüller lift

Computes the Teichmüller lift of $a \bmod p^{N}$ to the required precision N.
$\log T$, with T in μs

Exponential

Signature

int padic_exp(z, x, ctx)

Contract

Returns whether $\exp _{p}(x)$ converges, that is, $\operatorname{ord}_{p}(x) \geq 2$ or $\operatorname{ord}_{p}(x) \geq 1$ as $p=2$ or $p>2$, respectively, and computes z reduced modulo p^{N}.

Algorithm
Evaluates the truncated series

$$
\exp _{p}(x)=\sum_{i=0}^{m-1} \frac{x^{i}}{i!}
$$

over \mathbf{Z}_{p} by multiplying through by $(m-1)$!, hence requiring only one p-adic inversion. We can choose $m=\lceil((p-1) N-1) /((p-1) v-1)\rceil$.

Exponential

Improvements

- Rectangular splitting algorithm, starting from the expression

$$
\exp _{p}(x)=\sum_{j=0}^{\lceil m / B\rceil-1}\left(\sum_{i=0}^{B-1} \frac{x^{i}}{(i+B j)!}\right) x^{B j}
$$

where $B=\lfloor\sqrt{m}\rfloor$.

- Asymptotic improvements possible, e.g. using a binary splitting algorithm, which recursively considers half the coefficients of the series.

Exponential

Computes the exponential of c to the required precision N.

Logarithm

Signature
int padic_log(z, x, ctx)
Contract
Assumes that $\log _{p}(x)$ converges, that is, $\operatorname{ord}_{p}(x-1) \geq 2$ or $\operatorname{ord}_{p}(x-1) \geq 1$ as $p=2$ or $p>2$, respectively, and returns z reduced modulo p^{N}.

Algorithm

Evaluates the truncated series

$$
\log _{p}(x)=\sum_{i=1}^{m}(-1)^{i-1} \frac{(x-1)^{i}}{i}
$$

over \mathbf{Z}_{p} by inverting i at each step using a precomputed Hensel lifting structure.

Logarithm

Computes the logarithm of $d=1-c$ to the required precision N.

Polynomials over \mathbf{Q}_{p}

We represent a non-zero polynomial $f(X) \in \mathbf{Q}_{p}[X]$ as

$$
f(X)=p^{v}\left(a_{0}+a_{1} X+\cdots+a_{n} X^{n}\right)
$$

where $a_{0}, \ldots, a_{n} \in \mathbf{Z}$ and, for at least one i, p does not divide a_{i}.

Remark

- Allows for transfer of many problems over \mathbf{Q}_{p} to $\mathbf{Z} /\left(p^{N}\right)$, where fast implementations are available.
- Similar to the approach chosen over \mathbf{Q} in FLINT (and Sage), see trac ticket \#4000.

Functions for $\mathbf{Q}_{p}[X]$

- Conversions to polynomials over \mathbf{Z} and \mathbf{Q}
- Coefficient manipulation
- Addition, subtraction, negation
- Scalar multiplication
- Multiplication
- Powers
- Series inversion
- Derivative
- Evaluation
- Composition

Unramified extensions \mathbf{Q}_{q}

We represent an unramified extension of \mathbf{Q}_{p} as

$$
\mathbf{Q}_{q} \cong \mathbf{Q}_{p}[X] /(f(X))
$$

where $f(X) \bmod p$ is separable, storing $f(X)$ in a data structure for sparse polynomials.

This allows for the reduction of a degree n polynomial modulo $f(X)$ in linear time $\mathcal{O}(n)$.

Benchmarks for \mathbf{Q}_{q}

We present some timings for arithmetic in $\mathbf{Q}_{q} \bmod p^{N}$ where $q=5^{251}$ and $N=2^{i}, i=0, \ldots, 10$, comparing the three systems Magma (V2.17-13), Sage (4.8 incl. \#4821) and FLINT (2.3) on a machine with Intel Xeon CPUs running at 2.93 GHz .

To avoid worrying about taking the same random sequences of elements, we instead fix elements $a=(X+1)^{N}, b=\left(X^{2}+2\right)^{N}$, and $c=5^{2} b$ modulo p^{N}.

We consider the following operations:

- Addition
- Multiplication
- Inversion
- Teichmüller lift
- Frobenius

Addition

Signature

void qadic_add(z, $x, y, c t x)$
Contract
Sets $z=x+y \bmod p^{N}$, assuming both x and y are reduced modulo p^{N}.

Algorithm

Avoids expensive modulo operation on the coefficients, replacing this by one comparison and at most one subtraction per coefficient.

Addition (equal valuation)

Computes the sum $a+b$ to the required precision N.

Addition (distinct valuation)

Computes the sum $a+b$ to the required precision N.

Multiplication

Signature
void qadic_mul(z, $x, y, c t x)$
Contract
Sets $z=x y \bmod p^{N}$, without assuming that x, y are reduced modulo p^{N}.
Algorithm
First compute the product of the polynomials, then reduce the result modulo p^{N} and $f(X)$.

Multiplication

Computes the product $a b$ to the required precision N.

Inversion

Signature

void qadic_inv(z, $x, ~ c t x)$
Contract
Sets z to the inverse of $x \neq 0$ modulo p^{N}.

Algorithm

Hensel lifting on $g(X)=x X+1$, using the update formula $z^{\prime}=z+z(1-x z)$; the starting point z_{0} is the inverse of x in $\mathbf{F}_{p}[X] /(f(X))$ computed by a version of Euclid's extended algorithm only updating one cofactor ${ }^{1}$.

[^0]
Inversion

Computes the inverse of a to the required precision N.

Teichmüller lift

Signature

void qadic_teichmuller(z, x, ctx)
Contract
Assumes only that $\operatorname{ord}_{p}(x)=0$, returns the unique q such that $z^{q}-z=0$ reduced modulo p^{N}.

Algorithm

Hensel lifting on $g(X)=X^{q}-X$, starting from $z_{0}=x \bmod p$.

Improvements

Observe that $g^{\prime}\left(z_{i}\right)=q z_{i}^{q-1}-1$ and z_{i}^{q-1} is close to 1 so $g^{\prime}\left(z_{i}\right)$ is close to $q-1$. Thus, we only need to compute an inverse of $q-1$, which is defined over \mathbf{Q}_{p}.

Teichmüller lift

Computes the Teichmüller lift of a to the required precision N.

Frobenius

Signature
void qadic_frobenius(z, $x, k, c t x)$
Contract
Sets z to $\Sigma^{k} x$ modulo p^{N}, where $\Sigma \in \operatorname{Gal}\left(\mathbf{Q}_{q} / \mathbf{Q}_{p}\right) \cong \operatorname{Gal}\left(\mathbf{F}_{q} / \mathbf{F}_{p}\right)$ is the image of $\sigma: \mathbf{F}_{q} \rightarrow \mathbf{F}_{q}, x \mapsto x^{p}$.

Algorithm

- Write $\mathbf{Q}_{q} \cong \mathbf{Q}_{p}[X] /(f(X))$ and $x=\sum_{i=0}^{d-1} a_{i} X^{i}$.
- Compute $\Sigma^{k} X$ using Hensel lifting on f, starting from $z_{0}=X^{p^{k}}$ in $\mathbf{F}_{p}[X] /(f(X))$.
- Compute $\Sigma^{k} x=\sum_{i=0}^{d-1} a_{i}\left(\Sigma^{k} X\right)^{i}$, which is a polynomial composition modulo p^{N} and $f(X)$.

Frobenius

Improvements

- In a first approach, might use Horner's method to carry out the composition, which uses about d multiplications in \mathbf{Q}_{q}
- Instead, use a rectangular splitting method, starting from the expression

$$
x=\sum_{j=0}^{\lceil d / B\rceil-1}\left(\sum_{i=0}^{B-1} a_{i+B j} X^{i}\right) X^{B j}
$$

where $B=\lfloor\sqrt{d}\rfloor$, precomputing $\Sigma^{k}(X)^{i}$ for $i=0, \ldots, B$. This requires about $2 \sqrt{d}$ multiplications in \mathbf{Q}_{q} and extra space for about $d^{3 / 2}$ elements of $\mathbf{Z} /\left(p^{N}\right)$.

Frobenius

Computes the image of a under the Frobenius homomorphism to the required precision N.

Missing functionality for \mathbf{Q}_{q}

- Exponential
- Logarithm
- Square root
- Norm
- Trace

Summary of timings

	Operation	$T_{\text {Sage }} / T_{\text {FLINT }}$	$T_{\text {Magma }} / T_{\text {FLINT }}$
\mathbf{Q}_{p}	$a+b$	0.67	0.49
	$a+c$	1.63	0.91
	$a b$	0.58	2.41
	a^{-1}	3.94	3.9
	\sqrt{a}		6.17
	Teichmüller (a)	156.19	4670
	$\exp (c)$	206.25	12.25
	$\log (d)$	27.95	3.01
$\mathbf{Q}_{q}(a+b$	2.36	1.1	
	$a+c$	6.3	0.82
	$a b$	8.59	0.62
	a^{-1}	51.47	1.23
	Teichmüller (a)	9.48	1.03
	$\Sigma(a)$	11000	0.72

Codebase

- FLINT, http://www.flintlib.org
- Personal development branch for p-adic arithmetic, https://github.com/SPancratz/flint2/tree/padic
- Lines of source code,

	padic	padic_poly	padic_poly	qadic
Base	1987	1460	683	920
Test	2321	1380	903	1131

[^0]: ${ }^{1}$ Using Euclid's extended algorithm to compute d, s, t such that $d=\operatorname{gcd}(a, b)=s a+t b$, one improvement is to only update s during the procedure and then construct $t=(d-s a) / b$. Here, we can omit the last step as we do not need the cofactor of $f(X)$.

