Definite quaternion algebras and triple-product L-functions

Matthew Greenberg
University of Calgary

Sage Days 36
UCSD, 21 February, 2012

Objective

The formulas of Gross-Kudla, Böcherer-Schulze-Pillot, Watson and Ichino express central critical values of triple-product L-functions $L\left(\pi_{1} \times \pi_{2} \times \pi_{3}, \frac{1}{2}\right)$ in terms of values of trilinear forms

$$
\ell: V_{\pi_{1}} \otimes V_{\pi_{2}} \otimes V_{\pi_{3}} \longrightarrow \mathbb{C}
$$

on specific test vectors.
I will discuss joint work with Marco Seveso in which we show that, in the definite case, the trilinear forms themselves can be constructed in p-adic families, implying the existence of corresponding 3 -variable p-adic L-functions.

Outline

1 Introduction: Special values and arithmetic

- why? examples
- families of L-functions and families of special values
- p-adic variation

2 Automorphic forms and L-functions

- elliptic modular forms
- L-functions
- p-adic families of modular forms
- automorphic forms on quaternion algebras

3 Special value formulas
■ formulas of Gross, Gross-Kudla

- higher weight analogues
- p-adic variation

■ a theorem

1. Special values and arithmetic

Special values of L-functions encode arithmetic invariants.

Prototypical example: K number field, $\mathcal{O} \subset K$ ring of integers

$$
\zeta_{K}(s)=\sum_{I \subset \mathcal{O}} N(I)^{-s}=\sum_{n=1}^{\infty} r_{n} n^{-s}, \quad \Re(s)>1,
$$

where $\quad N(I)=|\mathcal{O} / I|, \quad r_{n}=\#$ of ideals of \mathcal{O} of norm n
Theorem: $\zeta_{K}(s)$ admits analytic continuation to $\mathbb{C}-\{1\}$. Moreover,

$$
\lim _{s \rightarrow 1}(s-1) \zeta_{K}(s)=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h_{K} R_{K}}{w_{K} \sqrt{\left|d_{K}\right|}} .
$$

Quadratic fields and their discriminants

m squarefree, $K=\mathbb{Q}(\sqrt{m}): \quad d_{K}= \begin{cases}m & \text { if } m \equiv 1 \quad(\bmod 4) \\ 4 m & \text { otherwise. }\end{cases}$

- d_{K} characterizes K :

$$
d \in \mathcal{D}:=\left\{d_{K}: K \text { quadratic }\right\}: \quad K_{d}=\mathbb{Q}(\sqrt{d}) \text { has disc. } d
$$

- $d \in \mathcal{D} \rightsquigarrow$ Kronecker character:

$$
\chi_{d}:(\mathbb{Z} / d \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}, \quad \chi_{d}(x)=\left(\frac{d}{x}\right)
$$

- Dirichlet L-function:

$$
L\left(\chi_{d}, s\right)=\sum_{(n, d)=1} \chi_{d}(n) n^{-s}, \quad \Re(s)>1
$$

Quadratic class number formula

$$
K=K_{d}: \quad \zeta_{K}(s)=\zeta(s) L\left(\chi_{d}, s\right)
$$

Since $\operatorname{res}_{s=1} \zeta(s)=1$,

$$
\begin{gathered}
L\left(\chi_{d}, 1\right)= \begin{cases}\frac{h_{d} \log \left|u_{d}\right|}{\sqrt{d}} & \text { if } d>0 \\
\frac{\pi h_{d}}{\sqrt{-d}} & \text { if } d<-4\end{cases} \\
\text { where } \quad \mathcal{O}_{d}^{\times} /\{ \pm 1\}=\left\langle u_{d}\right\rangle
\end{gathered}
$$

$$
\mathrm{Cl}_{d}=\left\{0 \neq I \subset \mathcal{O}_{d}\right\} / \sim, \quad I \sim J \Leftrightarrow a l=b J, a, b \in \mathcal{O}_{d}, a b \neq 0
$$

Class number: $\quad h_{d}:=\left|\mathrm{Cl}_{d}\right|<\infty$.

Using the formula

$$
h_{d}=L\left(\chi_{d}, 1\right) \frac{\sqrt{-d}}{2 \pi}
$$

the special values at $s=1$ of the family of L-functions
$\left\{L\left(\chi_{d}, 1\right): d \in \mathcal{D}^{-}\right\}$can be used to study the behaviour of h_{d} as $d \rightarrow \infty$.

Theorem: (Siegel, 1935) For every $\epsilon>0$, there is a $C_{\epsilon}>0$ such that

$$
h_{d}>C_{\epsilon} d^{1 / 2-\epsilon} \quad \forall d \in \mathcal{D}^{-}
$$

Theorem: (Goldfeld, 1976; Gross-Zagier, 1983) For every $\epsilon>0$, there is an effectively computable constant $C_{\epsilon}>0$ such that

$$
h_{d}>C_{\epsilon}(\log |d|)^{1-\epsilon} \quad \forall d \in \mathcal{D}^{-} .
$$

Another interesting family

Consider the (nonunitary) character

$$
\begin{gathered}
\rho_{2 k}: I_{\mathbb{Q}} \longrightarrow \mathbb{C}^{\times}, \quad \rho_{2 k}(n)=n^{2 k} \\
L\left(\rho_{2 k}, s\right)=\sum_{n=1}^{\infty} n^{2 k} n^{-s}=\sum_{n=1}^{\infty} n^{-(s-2 k)}=\zeta(s-2 k)
\end{gathered}
$$

Consider the special values at $s=1$ of L-functions in the family $\left\{L\left(\rho_{2 k}, s\right): k>0\right\}$:

Theorem: (Euler) $L\left(\rho_{2 k}, 1\right)=-\frac{B_{2 k}}{2 k} \in \mathbb{Q}$.
The values at $s=1$ of this family of L-functions display p-adic continuity in the "variable" $\rho_{2 k} \ldots$

Kummer's congruences:

$$
\begin{gathered}
2 k \equiv 2 \ell \quad\left(\bmod (p-1) p^{n-1}\right) \Longrightarrow \\
\left(1-p^{-(1-2 k)}\right) \frac{B_{2 k}}{2 k} \equiv\left(1-p^{-(1-2 \ell)}\right) \frac{B_{2 \ell}}{2 \ell} \quad\left(\bmod p^{n}\right)
\end{gathered}
$$

or, written differently,

$$
\left|L^{*}\left(\rho_{2 k}, 1\right)-L^{*}\left(\rho_{2 \ell}, 1\right)\right|_{p} \leq p^{-n}
$$

where

$$
L^{*}\left(\rho_{2 k}, s\right)=\left(1-\rho_{2 k}(p) p^{-s}\right) L\left(\rho_{2 k}, s\right) .
$$

Theorem: (Kubota-Leopoldt, 1964) There is a continuous function

$$
\zeta_{p}: \mathbb{Z}_{p} \times 2 \mathbb{Z} /(p-1) \mathbb{Z} \longrightarrow \mathbb{Z}_{p}
$$

extending the mapping

$$
2 k \mapsto L^{*}\left(\rho_{2 k}, 1\right) \quad \forall k \in \mathbb{Z}
$$

Choose an embeddings $\overline{\mathbb{Q}} \subset \mathbb{C}$ and $\overline{\mathbb{Q}} \subset \overline{\mathbb{Q}}_{p}$.
Let Φ be a collection of objects to which we can attach L-functions.

The philosophy of p-Adic variation

Suppose that

- Φ has a p-adic analytic structure - it's a " p-adic family"
- we can make sense of $L\left(\varphi, s_{0}\right)$ as an algebraic number for all $\varphi \in \Phi$.
Then we should investigate the p-adic properties of the function

$$
L_{p}(\cdot): \varphi \mapsto e^{(p)}\left(\varphi, s_{0}\right) L\left(\varphi, s_{0}\right),
$$

where $e^{(p)}(\varphi, s)$ is the factor at p in the Euler product for $L(\varphi, s)$.

2. Automorphic forms and L-functions

ELLIPTIC MODULAR FORMS

$$
f(z)=\sum_{n=0}^{\infty} a_{n}(f) e^{2 \pi i n z}, \quad z \in \mathfrak{H}=\{z \in \mathbb{C}: \Im(z)>0\}
$$

holomorphic, weight k, level N :

$$
\begin{gathered}
(f \mid \gamma)(z)=f(z) \quad \text { for } \\
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{0}(N)=\left\{\gamma \equiv\left(\begin{array}{ll}
* & * \\
& *
\end{array}\right)(\bmod N)\right\} \subset \operatorname{SL}_{2}(\mathbb{Z})
\end{gathered}
$$

(and holomorphic at the cusps $\neq \infty$)

- a cusp form if $a_{0}(f)=0$ (and vanishes at the other cusps $\neq \infty$)
- Notation: $M_{k}(N)$ for modular forms, $S_{k}(N)$ for cusp forms

2. Automorphic forms and L-functions

ELLIPTIC MODULAR FORMS

$$
f(z)=\sum_{n=0}^{\infty} a_{n}(f) e^{2 \pi i n z}, \quad z \in \mathfrak{H}=\{z \in \mathbb{C}: \Im(z)>0\}
$$

holomorphic, weight k, level N :

$$
\begin{aligned}
& (f \mid \gamma)(z):=(\operatorname{det} \gamma)^{k-1}(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right)=f(z) \quad \text { for } \\
& \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{0}(N)=\left\{\gamma \equiv\left(\begin{array}{ll}
* & * \\
& *
\end{array}\right)(\bmod N)\right\} \subset \operatorname{SL}_{2}(\mathbb{Z})
\end{aligned}
$$

(and holomorphic at the cusps $\neq \infty$)

- a cusp form if $a_{0}(f)=0$ (and vanishes at the other cusps $\neq \infty$)
- Notation: $M_{k}(N)$ for modular forms, $S_{k}(N)$ for cusp forms

Arithmeticity of modular forms

■ subgroup structure of $\mathrm{SL}_{2}(\mathbb{Z}) \rightsquigarrow$ Hecke operators T_{n}

- the T_{n} are self-adjoint and commute pairwise \Rightarrow they're simultaneously diagonalizable

■ systems of Hecke eigenvalues are algebraic integers

■ If f is a normalized, cuspidal eigenform $\left(a_{1}(f)=1\right)$, then $f \mid T_{n}=a_{n}(f) f$.

p-adic families of modular forms

Suppose

■ f is a normalized eigenform of weight k_{0} and level N,
$\square \operatorname{ord}_{p} a_{p}(f)<k_{0}-1 \quad($ "small slope").
Theorem: (Hida, Coleman) There is a p-adic domain

$$
\Omega \subset \mathbb{Z} /(p-1) \mathbb{Z} \times \mathbb{Z}_{p}
$$

with $k_{0} \in \Omega$ and analytic functions \mathbf{a}_{n} on Ω such that:
■ for each $k \in \Omega \cap \mathbb{Z}, k>k_{0}, \mathbf{a}_{n}(k)$ is algebraic for all n, and

$$
\mathbf{f}_{k}:=\sum_{n=1}^{\infty} \mathbf{a}_{n}(k) q^{n} \in \overline{\mathbb{Q}}[[q]] \subset \mathbb{C}[[q]], \quad q:=e^{2 \pi i z}
$$

is the Fourier expansion of an eigenform of weight k,
■ $\mathbf{f}_{k_{0}}=f$

p-adic family of Eisenstein series

$$
\begin{gathered}
E_{2 k}^{(p)}(q)=\frac{L^{*}\left(\rho_{2 k}, 1\right)}{2}+\sum_{n=1}^{\infty} \sigma_{2 k-1}^{(p)}(n) q^{n} \in M_{2 k}(p) \\
\text { where } \sigma_{2 k-1}^{(p)}(n)=\sum_{\substack{d \mid n \\
p \nmid d}} d^{2 k-1} \\
k \equiv \ell \quad\left(\bmod (p-1) p^{N-1}\right) \Longrightarrow E_{2 k}^{(p)}-E_{2 \ell}^{(p)} \in p^{N} \mathbb{Z}_{(p)}[[q]]
\end{gathered}
$$

- Cuspidal examples of p-adic families typically don't have such simple q-expansions, i.e., nice formulas for the \mathbf{a}_{n}.

L-functions of modular forms

Let $f \in S_{k}(N)$ be a normalized, primitive eigenform.

$$
\Re(s)>k: \quad L(f, s)=\prod_{\ell \nmid N}\left(1-a_{\ell}(f) \ell^{-s}+\ell\left(\ell^{-s}\right)^{2}\right)^{-1} \prod_{\ell \mid N}(\cdots)
$$

Mellin transform:

$$
\Lambda(f, s)=N^{s / 2} \int_{0}^{\infty} f(i y) y^{s} \frac{d y}{y}=L(f, s) N^{s / 2}(2 \pi)^{-s} \Gamma(s)
$$

Theorem: (Hecke) $\Lambda(f, s)$ has analytic continuation to \mathbb{C} and satisfies the functional equation

$$
\Lambda(f, s)=w_{N}(f) \Lambda(f, k-s), \quad w_{N}(f) \in\{ \pm 1\} \quad\left(f \mid W_{N}=w_{N}(f) f\right)
$$

- We need more than classical modular forms to study the L-functions of modular forms!

Quaternion algebras

- A quaternion \mathbb{Q}-algebra B is a 4-dimensional central, simple \mathbb{Q}-algebra.
■ There is a finite set F of places of \mathbb{Q} such that

$$
B \otimes_{\mathbb{Q}} \mathbb{Q}_{v} \begin{cases}\cong M_{2}\left(\mathbb{Q}_{v}\right) & \text { if } v \notin F \\ \text { is a division algebra } & \text { if } v \in F\end{cases}
$$

■ If $v \in F, v$ is said to ramify in B. F characterizes B, up to isomorphism. The discriminant of B is the quantity

$$
\prod_{\ell \in F, \ell \neq \infty} \ell
$$

$\square B$ is called definite $\Longleftrightarrow B_{\infty} \cong \mathbb{H} \Longleftrightarrow \infty \in F$

$$
\mathbb{H}=\mathbb{R}+\mathbb{R} i+\mathbb{R} j+\mathbb{R} i j, \quad i^{2}=j^{2}=k^{2}=-1, j i=-i j
$$

Quaternionic orders and ideals

- An order R in B is a subring of B free of rank 4 over \mathbb{Z}.
- An Eichler order R of level $N^{+},\left(N^{+}, N^{-}\right)=1$, is an order such that for all $\ell \nmid N^{-}$,

$$
R \otimes \mathbb{Z}_{\ell} \cong\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}\left(\mathbb{Z}_{\ell}\right): c \in N \mathbb{Z}_{\ell}\right\}
$$

■ $R_{N^{-}, N^{+}}:=$Eichler order of level N^{+}in the quaternion algebra of discriminant N^{-}

- A rank $4 \mathbb{Z}$-submodule I of B is called a left R-ideal if

$$
R=\{x \in B: x I \subset I\}
$$

■ $\mathcal{I}_{R}:=$ set of left R-ideals.

Automorphic forms on definite quaternion algebras

$$
R=R_{N^{-}, N^{+}}: \quad M_{2}\left(N^{-}, N^{+}\right):=\left\{f: \mathcal{I}_{R} / B^{\times} \longrightarrow \mathbb{Q}\right\}
$$

ideal class representatives:

$$
\mathcal{I}_{R} / B^{\times}=\left\{\left[l_{i}\right]: i=1, \ldots, h\right\}
$$

standard basis:

$$
e_{i}\left(I_{j}\right):=\delta_{i, j}
$$

inner product: $\quad\langle F, G\rangle:=\sum_{i=1}^{h} \frac{1}{w_{i}} f\left(I_{i}\right) g\left(l_{i}\right)$
cusp forms: $\quad \mathcal{S}_{2}\left(N^{-}, N^{+}\right):=\operatorname{ker}\langle\cdot, \mathbf{1}\rangle \subset M_{2}\left(N^{-}, N^{+}\right)$

Hecke operators

 ideal structure of $R_{N^{-}, N^{+}} \rightsquigarrow$ operators T_{n} on $M_{2}\left(N^{-}, N^{+}\right) \& S_{2}$$$
\text { self-adjoint: } \quad\left\langle F \mid T_{n}, G\right\rangle=\left\langle F, G \mid T_{n}\right\rangle
$$

theta-function:

$$
\Theta(F, G)(q):=\sum_{n=1}^{\infty}\left\langle F \mid T_{n}, G\right\rangle q^{n}
$$

Proposition: (Brandt matrices $B(n)$) We have:

$$
\Theta\left(e_{i}, e_{j}\right)=\frac{1}{2 w_{j}} \sum_{x \in l_{j}^{-1} l_{i}} q^{N(x) / N\left(l_{j}^{-1} l_{i}\right)}=\sum_{n=0}^{\infty} B_{i, j}(n) q^{n},
$$

where $B_{i, j}(n)=\#$ of ideals of norm n right equivalent to $I_{j}^{-1} l_{i}$.

Eichler's correspondence (aka. Jacquet-Langlands)

$$
\mathbb{T}:=\mathbb{Q}\left[T_{n}:\left(n, N^{-}\right)=1\right] \subset \operatorname{End}_{\mathbb{Q}} S_{2}\left(N^{-}, N^{+}\right),
$$

$$
N:=N^{-} N^{+} .
$$

Theorem: (Eichler) The map

$$
\Theta: S_{2}\left(N^{-}, N^{+}\right) \otimes_{\mathbb{T}} S_{2}\left(N^{-}, N^{+}\right) \longrightarrow S_{2}(N)^{N^{--} \text {new }}
$$

is an isomorphism.
Corollary: Fix $0 \neq \star \in S_{2}(N)$. Then

$$
\Theta_{\star}: S_{2}\left(N^{-}, N^{+}\right) \longrightarrow S_{2}(N)^{N^{--n e w}}, \quad \Theta_{\star}(F)=\Theta(F, \star)
$$

is a \mathbb{T}-equivariant isomorphism.

3. Special value formulas

Suppose:

■ $N=N^{-} N^{+}$is squarefree,
$\square d$ is a fundamental discriminant, $d<-4,(d, N)=1$.
■ $\chi_{d}(\ell)=-1$ for all $\ell \mid N^{-}$,

- $\chi_{d}(\ell)=+1$ for all $\ell \mid N^{+}$.

Let $\psi: G_{K}^{a b} \rightarrow \mathbb{C}^{\times}$be a finite order, anticyclotomic character.

Theorem:

(Gross, 1987; Hatcher; Dagigh; Xue; Yuan-Zhang-Zhang, 2011) There is a linear functional

$$
\ell_{\psi}: S_{2}\left(N^{-}, N^{+}\right) \rightarrow \mathbb{Q}(\psi)
$$

such that for all Hecke eigenforms $F \in S_{2}\left(N^{-}, N^{+}\right)$,

$$
\frac{L\left(\Theta_{\star}(F), \psi, 1\right)}{\left\|\Theta_{\star}(F)\right\|^{2}}=d^{-1 / 2} \frac{\left|\ell_{\psi}(F)\right|^{2}}{\|F\|^{2}}
$$

Gross-Kudla formula

$$
f, g, h \in S_{2}(N), \quad \Sigma=\left\{\ell \mid N:-a_{\ell}(f) a_{\ell}(g) a_{\ell}(h)=-1\right\} .
$$

Suppose $|\Sigma|$ is odd.
$B:=$ quaternion \mathbb{Q}-algebra ramified at $\Sigma \cup\{\infty\} \quad$ (definite)

$$
N^{-}:=\prod_{\ell \in \Sigma} \ell, \quad N^{+}=N / N^{-} .
$$

$\exists F, G, H \in S_{2}\left(N^{-}, N^{+}\right)$s.t. $\Theta_{\star}(F)=f, \Theta_{\star}(G)=g, \Theta_{\star}(H)=h$

Theorem: (Gross-Kudla, 1992; Böcherer-Schulze-Pillot; Ichino)

$$
\frac{L(f \times g \times h, 2)}{\|f\|^{2}\|g\|^{2}\|h\|^{2}} \doteq \frac{\left|\sum_{i} w_{i}^{-2} F\left(l_{i}\right) G\left(l_{i}\right) H\left(l_{i}\right)\right|^{2}}{\|F\|^{2}\|G\|^{2}\|H\|^{2}}
$$

Higher weight

Let F be a field that splits B :

$$
\begin{gathered}
B \otimes F \cong M_{2}(F) . \quad\left(\text { e.g. } F=\mathbb{Q}_{\ell}, \ell \nmid N^{-}\right) \\
P_{k}=\left\{P(x, y) \in F[x, y]: P(t x, t y)=t^{k} P(x, y)\right\} \\
V_{k}=\operatorname{Hom}\left(P_{k}, F\right) \\
\gamma \in \mathrm{SL}_{2}(F): \quad(\gamma P)(x, y)=P((x, y) \gamma), \quad(\ell \gamma)(P)=\ell(\gamma P) \\
M_{k+2}\left(N^{-}, N^{+}\right)=\left\{f: \mathcal{I}_{R} \longrightarrow V_{k}: f(I \gamma)=f(I) \gamma \forall \gamma \in B^{\times}\right\}
\end{gathered}
$$

Gross-Kudla in higher weight

$$
\text { weight 2: } \quad \frac{L(f \times g \times h, 2)}{\|f\|^{2}\|g\|^{2}\|h\|^{2}} \doteq \frac{\left|\sum_{i} w_{i}^{-2} F\left(l_{i}\right) G\left(I_{i}\right) H\left(l_{i}\right)\right|^{2}}{\|F\|^{2}\|G\|^{2}\|H\|^{2}}
$$

What's the analogue of the trilinear form

$$
(F, G, H) \mapsto \sum_{i} w_{i}^{-2} F\left(I_{i}\right) G\left(I_{i}\right) H\left(I_{i}\right)
$$

for $F \in M_{k+2}\left(N^{-}, N^{+}\right), G \in M_{\ell+2}\left(N^{-}, N^{+}\right), H \in M_{m+2}\left(N^{-}, N^{+}\right)$?
To answer this, we need some representation theory of SL_{2} :

- self-duality of highest weight representations
- Clebsch-Gordan decomposition

$$
P_{k}^{\iota}=P_{k} \text { with "reversed" action } P \gamma:=\gamma^{\iota} P,
$$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{\iota}=\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Highest weight vectors:

$$
\begin{align*}
E_{k} \in P_{k}^{\iota}, E_{k}(x, y)=x^{k} ; & \delta_{(1,0)} \in V_{k}, \delta_{(1,0)}(P)
\end{aligned}=P(1,0), ~ \begin{aligned}
& E_{k}\left(\begin{array}{cc}
t^{-1} & \\
& t
\end{array}\right)=t^{k} E_{k}, \quad \delta_{(1,0)}\left(\begin{array}{cc}
t^{-1} & \\
& t
\end{array}\right)=t^{k} \delta_{(1,0)} \\
& E_{k}\left(\begin{array}{cc}
1 & \\
* & 1
\end{array}\right)=E_{k}, \quad \delta_{(1,0)}\left(\begin{array}{cc}
1 & \\
* & 1
\end{array}\right)=\delta_{(1,0)}
\end{align*}
$$

Proposition: There is a unique $\mathrm{SL}_{2}(F)$-equivariant map $\varphi: V_{k} \rightarrow P_{k}^{c}$ such that $\varphi\left(\delta_{(1,0)}\right)=E_{k}$. It is an isomorphism.

Proposition: (Clebsch-Gordan)

$$
\ell, m \text { even, } \ell>m: \quad V_{\ell} \otimes V_{m}=\bigoplus_{\substack{\ell-m \lll<m \\ \text { ieven }}} V_{i}
$$

Assume: $k>\ell>m$ even, $k<\ell+m, \quad s:=\frac{-k+\ell+m}{2}$

$$
\text { then } \quad \exists!\varphi_{k, \ell, m}: V_{k} \longrightarrow V_{\ell} \otimes V_{m}=\left(P_{\ell}^{x_{1}, y_{1}} \otimes P_{m}^{x_{2}, y_{2}}\right)^{\iota}
$$

such that $\quad \varphi_{k, \ell, m}\left(\delta_{(1,0)}\right)=x_{1}^{\ell-s} x_{2}^{m-s}\left(x_{1} y_{2}-x_{2} y_{1}\right)^{s}=: E_{k, \ell, m}$.
Trilinear form: Since $\left(V_{\ell} \otimes V_{m}\right)^{\vee}=V_{\ell} \otimes V_{m}$,

$$
\varphi_{k, \ell, m} \in \operatorname{Hom}\left(V_{k}, V_{\ell} \otimes V_{m}\right)=\operatorname{Hom}\left(V_{k} \otimes V_{\ell} \otimes V_{m}, F\right)
$$

$\varphi_{k, \ell, m}$, induces

$$
\Phi_{k, \ell, m}: M_{k+2}\left(N^{-}, N^{+}\right) \otimes M_{\ell+2}\left(N^{-}, N^{+}\right) \otimes M_{m+2}\left(N^{-}, N^{+}\right) \longrightarrow F .
$$

Theorem: (Böcherer-Schulze-Pillot, 1995) Suppose f_{k}, g_{ℓ}, and h_{m} have weights $k+2, \ell+2$, and $m+2$, respectively, and that $\Theta_{\star}\left(F_{k}\right)=f_{k}, \Theta_{\star}\left(G_{\ell}\right)=g_{\ell}$, and $\Theta_{\star}\left(H_{m}\right)=h_{m}$. Then

$$
\frac{L\left(f_{k} \times g_{\ell} \times h_{m}, c_{k, \ell, m}\right)}{\left\|f_{k}\right\|^{2}\left\|g_{\ell}\right\|^{2}\left\|h_{m}\right\|^{2}} \doteq \frac{\left|\Phi_{k, \ell, m}\left(F_{k} \otimes G_{\ell} \otimes H_{m}\right)\right|^{2}}{\left\|F_{k}\right\|^{2}\left\|G_{\ell}\right\|^{2}\left\|H_{m}\right\|^{2}}
$$

where

$$
c_{k, \ell, m}=\frac{k+\ell+m+4}{2} .
$$

Question: What happens if we vary f_{k}, g_{ℓ}, and h_{m} in p-adic families?

The universal highest weight representation

$$
\begin{aligned}
\Sigma_{0}(p) & :=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}\left(\mathbb{Z}_{p}\right) \cap \mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right): a \in \mathbb{Z}_{p}^{\times}, c \in p \mathbb{Z}_{p}\right\} \\
& =\left\{\gamma \in \mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right): \mathbb{Z}_{p} \gamma \subset \mathbb{Z}_{p}\right\}
\end{aligned}
$$

Theorem: (Stevens) There exist:

- a \mathbb{Q}_{p}-Fréchet algebra $R_{\text {univ }}$ and a universal weight

$$
\varphi_{\text {univ }}: \mathbb{Z}_{\rho}^{\times} \longrightarrow R_{\text {univ }},
$$

- a Fréchet $R_{\text {univ }}$-module $\mathcal{D}_{\text {univ }}$ and a vector $\delta_{\text {univ }} \in \mathcal{D}_{\text {univ }}$ such that ($\mathcal{D}_{\text {univ }}, \delta_{\text {univ }}$) is a highest weight \sum-module for $\varphi_{\text {univ, }}$,
such that for any highest weight representation (V, v) of $\mathrm{SL}_{2}\left(\mathbb{Q}_{p}\right)$ with weight φ, there are unique maps

$$
\rho: R_{\text {univ }} \longrightarrow \mathbb{Q}_{p}, \quad \rho: \mathcal{D}_{\text {univ }} \otimes_{\rho} \mathbb{Q}_{p} \longrightarrow V
$$

such that $\rho \circ \varphi_{\text {univ }}=\varphi$ and $\rho\left(\delta_{\text {univ }}\right)=v$.

$$
\begin{aligned}
\mathcal{A}=\mathcal{A}\left(\mathbb{Z}_{p}^{\times} \times \mathbb{Z}_{p}\right) & :={\operatorname{locally} \text { analytic functions on } \mathbb{Z}_{p}^{\times} \times \mathbb{Z}_{p}}_{\mathcal{D}_{\text {univ }}=\mathcal{D}\left(\mathbb{Z}_{p}^{\times} \times \mathbb{Z}_{p}\right)}:=\operatorname{Hom}_{\text {cts }}\left(\mathcal{A}, \mathbb{Q}_{p}\right) \\
& =\text { locally analytic distributions on } \mathbb{Z}_{p}^{\times} \times \mathbb{Z}_{p} \\
\delta_{\text {univ }} & =\delta_{(1,0)} \in \mathcal{D} \text { univ. highest weight vector }
\end{aligned}
$$

Universality: Given (V, v) highest weight representation of $\mathrm{SL}_{2}\left(\mathbb{Q}_{p}\right)$, define

$$
J: \mathbb{Z}_{p}^{\times} \times \mathbb{Z}_{p} \rightarrow V, \quad J(x, y)=v\left(\begin{array}{ll}
x & y \\
& 1
\end{array}\right)
$$

and

$$
\rho:\left(\mathcal{D}_{\text {univ }}, \delta_{\text {univ }}\right) \rightarrow(V, v), \quad \rho(\mu)=\int_{\mathbb{Z}_{p}^{\times} \times \mathbb{Z}_{p}} J(x, y) d \mu(x, y)
$$

p-adic families of automorphic forms

$\mathrm{M}\left(N^{-}, N^{+}\right):=\mathcal{D}_{\text {univ }}$-valued automorphic forms for $R_{N^{-}, N^{+}}$

$$
\rho_{k}: \mathcal{D}_{\text {univ }} \rightarrow V_{k}, \quad \rho_{k}\left(\delta_{\text {univ }}\right)=\delta_{(1,0)}
$$

Theorem: (Chenevier, 2003) Given an eigenform f_{k} in $M_{k+2}\left(N^{-}, N^{+}\right)$, with

$$
\operatorname{ord}_{p} a_{p}\left(f_{k}\right)<k+1,
$$

there is a unique \mathbf{f} in $\mathbf{M}\left(N^{-}, N^{+}\right)$such that $\rho_{k}(\mathbf{f})=f_{k}$.

p-adic families of trilinear forms

Setting $X=\mathbb{Z}_{p}^{\times} \times \mathbb{Z}_{p}$, we might look for a diagram like:

We don't get this. We get a similar diagram, but with

$$
\begin{gathered}
\left(\rho_{k} \otimes \rho_{\ell} \otimes \rho_{m}\right) \circ \varphi_{\text {univ }}=\left(e_{k, \ell, m}^{(p)} \cdot \varphi_{k, \ell, m}\right) \circ\left(\rho_{k} \otimes \rho_{\ell} \otimes \rho_{m}\right) \\
\text { where } \quad e_{k, \ell, m}^{(p)}=\text { Euler-like factor at } p .
\end{gathered}
$$

Constructing $\varphi_{\text {univ }}$

Recall that we constructed

$$
\varphi_{k, \ell, m} \in \operatorname{Hom}\left(V_{k}, V_{\ell} \otimes V_{m}\right)=\operatorname{Hom}\left(V_{k} \otimes V_{\ell} \otimes V_{m}, F\right) .
$$

by identifying a highest weight k vector

$$
E_{k, \ell, m} \in V_{\ell} \otimes V_{m}=\left(P_{\ell}^{x_{1}, y_{1}} \otimes P_{m}^{x_{2}, y_{2}}\right)^{\iota} .
$$

To construct $\varphi_{\text {univ }}$ we do the same thing, but with universal objects instead of the $V \mathrm{~s}$ and $P \mathrm{~s}$.

- "Clebsch-Gordan in families"

A theorem

Let f_{k}, g_{ℓ}, and h_{m} be in $S_{k}\left(N_{f}\right), S_{\ell}\left(N_{g}\right)$, and $S_{m}\left(N_{h}\right)$, respectively such that

$$
k, \ell, m \text { are even, } \quad m-\ell<k<m+\ell .
$$

Set $N=\operatorname{gcd}\left(N_{f}, N_{g}, N_{h}\right)$, suppose that

$$
\Sigma:=\left\{q \mid N:-w_{q}\left(f_{k}\right) w_{q}\left(g_{\ell}\right) w_{q}\left(h_{m}\right)=-1\right\}
$$

has odd size, and let

$$
N^{-}=\prod_{q \in \Sigma} q, \quad N^{+}=N / N^{-} .
$$

Suppose $p \nmid N$ and that

$$
\operatorname{ord}_{p} a_{p}\left(f_{k}\right)<k-1, \quad a_{p}\left(g_{\ell}\right)<\ell-1, \quad a_{p}\left(h_{m}\right)<m-1 .
$$

Let \mathbf{f}, \mathbf{g}, and \mathbf{h} be the p-adic families through f_{k}, g_{ℓ}, and h_{m}.

Theorem: (G-Seveso, 2012) There is a p-adic analytic function \mathcal{L}_{p} such that

$$
\frac{L\left(\mathbf{f}_{\kappa} \times \mathbf{g}_{\lambda} \times \mathbf{h}_{\mu}, c_{\kappa, \lambda, \mu}\right)}{\left\|\mathbf{f}_{\kappa}\right\|^{2}\left\|\mathbf{g}_{\lambda}\right\|^{2}\left\|\mathbf{h}_{\mu}\right\|^{2}} \doteq C_{p} \cdot C_{N_{t}, N_{g}, N_{h}} \cdot \mathcal{L}_{p}(\kappa, \lambda, \mu)
$$

for all positive, even integers κ, λ, and μp-adically close to k, ℓ, and m, respectively, in $\mathbb{Z} /(p-1) \mathbb{Z} \times \mathbb{Z}$.

Thanks!

Questions?

