
Parallel Computation Tools for
Research
A Wish List

Henry Cohn

cohn@microsoft.com

Microsoft Research

Parallel Computation Tools for Research – p.1



Disclaimer

This talk contains no technical content.

My goal is to provoke discussion, ideas, and
action.

My perspective is that of a user, not an expert in

parallel computation.

Parallel Computation Tools for Research – p.2



Large computations

Increasingly common in mathematics.

Computer-assisted proofs: four color theorem,
Kepler conjecture, projective plane of order 10

Tables: Stein’s modular forms database,
Sloane’s packing tables

Searches: Great Internet Mersenne Prime
Search (GIMPS)

Parallel Computation Tools for Research – p.3



Characteristics

Often embarrassingly parallelizable.

Usually carried out by ad hoc means.

What sorts of tools will enable new projects and
avoid duplication of effort?

Parallel Computation Tools for Research – p.4



Three scenarios

Case 1: GIMPS model of recruiting many
volunteers (typically otherwise idle cycles).

Case 2: use among collaborators simply for
organizing a large-scale computation.

Case 3: use on multicore computers.

Parallel Computation Tools for Research – p.5



Current situation

Most existing tools are designed either for
experts or for a specialized purpose.

Volunteer effort within pure mathematics is
focused on GIMPS and the like (unserious).

Personal experience shows that setting things up

takes real effort for non-experts.

Parallel Computation Tools for Research – p.6



My experience

One of my research interests is packing and
energy minimization.

Example: how should one distribute points on a
sphere?

Build tables, search for patterns, make
conjectures.

Easy to distribute in principle among many
processors, but involves a fair amount of
bookkeeping and organization.

Parallel Computation Tools for Research – p.7



BOINC

Berkeley Open Infrastructure for Network
Computing

Outgrowth of SETI@home.

Probably the best available infrastructure for
large-scale volunteer efforts. Good for getting
unused cycles or as a screensaver.

Bad choice for inexperienced organizers or
smaller projects.

Parallel Computation Tools for Research – p.8



My first attempt

Assume all processors have access to a
common file system. Use files to transmit
information.

Pro: straightforward to implement, requires no
specialized knowledge or software.

Con: can’t scale beyond the common file system.

Have used this approach (with roughly a dozen
processors), but it is clearly limited.

Parallel Computation Tools for Research – p.9



Future Plans

Idea: I should develop a more scalable system
for my problem.

Parallel Computation Tools for Research – p.10



Future Plans

Idea: I should develop a more scalable system
for my problem.

Better idea: I should develop a general-purpose
solution for anyone in my position.

Parallel Computation Tools for Research – p.11



Future Plans

Idea: I should develop a more scalable system
for my problem.

Better idea: I should develop a general-purpose
solution for anyone in my position.

Best idea: William Stein should develop a
general-purpose solution for anyone in my
position (and distribute it with SAGE).

Parallel Computation Tools for Research – p.12



Goal

Flexible system for automating distributed
computation (only when trivially parallelizable).

Key criterion: ease of use comparable to a
mainstream computer algebra system. If you
have to know what a makefile is, it’s too technical.

“Buy gridMathematica” is not a good solution.

Yi Qiang is working on this (and will give a
progress report at this workshop). Keyword:
DSage.

Parallel Computation Tools for Research – p.13



Rough architecture

Anybody can set up a problem server (must be
trivially easy!). Whoever knows the password
can supply it with problems.

Clients download problems and upload answers
(or say that they have given up). No
communication between clients. Problems time
out if client does not respond within some time
limit.

Authentication may be required for clients. Each
client user may have a unique ID and password.

Parallel Computation Tools for Research – p.14



Usage

May have giant public server at which many
mathematicians supply problems and random
people can volunteer their computing power for
the good of mathematics. Potentially useful but
not my personal goal.

I just want to coordinate many diverse computers
(at Microsoft, at the University of Washington, at
collaborators’ universities, at home), and I don’t
want doing this to be a miniature research
project itself.

Parallel Computation Tools for Research – p.15



Difficulties

What problems can occur? How can they be
minimized?

Parallel Computation Tools for Research – p.16



Issues for clients

Malicious code.

Stability.

Resource hogging.

Suspendability.

This is a serious issue for volunteer clients or in a

corporate environment.

Parallel Computation Tools for Research – p.17



Virtual machines

I see only one realistic option: the downloaded

problems should be run on virtual machines. That

solves all these client problems at the cost of

some overhead.

Parallel Computation Tools for Research – p.18



Threats to servers

Denial of service is presumably the biggest issue.

Frankly not worth worrying about (risk is low and

difficulty of countering it is high).

Parallel Computation Tools for Research – p.19



Tampering with results

Threat models:

Mischief: anonymous volunteer reports bogus
results.

Sabotage: corrupting a rival’s research
calculations.

Fraud: exaggerating amount of calculation
that has been completed or its results (with
ability to blame anonymous strangers if fraud
is detected).

Parallel Computation Tools for Research – p.20



Role of anonymity

Risks of tampering all depend on anonymity.

Use of anonymous volunteers may be crucial for
certain large-scale projects, but it carries small
risks. These risks are unavoidable in most cases.

Recommendation: all computations depending
on volunteers who are not personally known to
the organizers should be labeled as such.

I personally would not rely on such computations

in the proof of an important theorem.
Parallel Computation Tools for Research – p.21



Verification

Can one solve tampering threats by verification
of results?

We cannot trust that open source clients have
not been modified (although only small risk).

One should perform consistency checks and
redundant calculations, but keep in mind that this
is far from infallible.

Parallel Computation Tools for Research – p.22



Credit

How should credit be awarded for completing
distributed computations? GIMPS has dealt with
this issue.

Their solution: credit Mersenne prime
discoverers, code writers, et al.

This applies only to scenarios like GIMPS (where
most users find nothing but occasionally
someone hits the jackpot).

Parallel Computation Tools for Research – p.23



Credit recommendations

Use of software such as DSage should be
acknowledged in research papers.

Volunteers should always be acknowledged
collectively.

Any volunteers whose clients made a critical
contribution (such as finding a Mersenne prime)
should be acknowledged individually, but need
not be included as authors.

Parallel Computation Tools for Research – p.24



Credit recommendations

Any individuals or organizations who contribute a
substantial fraction of the total computing power
(perhaps 5% or 10%) should be acknowledged
individually.

These issues should be addressed before they
become a problem, not after. Community
consensus should be established and explained
in the documentation.

Parallel Computation Tools for Research – p.25



The future

Within ten years the principal application will be
massively multicore machines.

We don’t even know what a really good multicore
computer algebra system should look like (let
alone how to build one).

Too early for concrete design (don’t know memory

bandwidth, etc.), but not too early to start thinking.

Parallel Computation Tools for Research – p.26



Multicore

What could one do with 128 cores?

Parallel algorithms for primitive operations.

Straightforward parallelization of user code.

Speculative execution.

???

We need new ideas!

Parallel Computation Tools for Research – p.27


	Disclaimer
	Large computations
	Characteristics
	Three scenarios
	Current situation
	My experience
	BOINC
	My first attempt
	Future Plans
	Future Plans
	Future Plans
	Goal
	Rough architecture
	Usage
	Difficulties
	Issues for clients
	Virtual machines
	Threats to servers
	Tampering with results
	Role of anonymity
	Verification
	Credit
	Credit recommendations
	Credit recommendations
	The future
	Multicore

