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11:30 a.m.
Processor-0Oblivious Parallel Processing with Provable Performances

Jean—-Louis Roch

Overview:

-Introduction

-Machine model and werk-stealing

-Cheme 1 Adaptive Parallel algorithms

—Scheme 2 Nano-loop

-Scheme 3 Amoritizing the overhead of parallelism
-Putting things together

Interactive Parallel Computation:

Any application is "parallel":

—-composition of several programs / library procedures (possibly
concurrent)

-each procedure written independently and also possibly parallel, itself

Parallel Interactive Application:
—Human in the loop
-Prallel machines (cluster) to enable large interactive applications
-Two main performance criteria:
-Frequency (refresh rate)
—Visualization: 30-60Hz
—Haptic: 1000Hz
—Latency (makespan for one iteration)
—object handling: 75 ms

New Parallel Supports (from small to large)
-Multi-core architectures
—Dual Core procssors
-Dual Core graphics processors
-Heterogeneous multi-cores
-MPSoCs
~-Commodity SMPs
-8-way PCs equipped with multicore processors (AMD Hypertransport)
+ 2 GPUs
~Clusters
-72% of top 500 machines
-Trends: more processing units, faster networks (PCI-Express)
~Heterogeneous (CPUs, GPUs, FPGAs)
-Grids
-Heterogeneous networks
-Heterogeneous administration policies
—-Resource wvolatility
—Virtual Reality / Visualization Clusters
—Virtual Reality, Scientific Visualization and Computaticnal
Steering
-PC clusters + graphics cards + multiple I/0 devices (cameras, 3D
trackres, etc.)

Parallel induces overhead: E.G. Parallel prefix on fixed architecture
Prefix problem: Input a 0, ..., a_n. Qutput : sequential products.
Serial performs only n opreations, serial performs 2n

but 2*log(n) time.

Optimal time T_p = 2Zn/{p+l) but performs Znp/(p+l) operations.

Lower Bound for the Prefix: look at the multiplication circuilt as a
binary tree

The problem: To design a single algeorithm that computes eff

[N

ciently



prefix (a) on an aritrary dynamic architecture

Dynamic Architecutre: non-fixed number of resocurces, varible speeds.
e.g. grid, ... but not only: SMP server in multi-users mode.

Processors-0blivious Algorithms -- that's what what we want (7)

Machine Model and Work Stealing
-Heterogeneous machine model and work-depth framework
-Distributed work stealing

Heterogenous Processors, work and depth:
Processor speeds are assumed to change arbitrarily and adversarily.
Model [Bender, Rabin 02] PI_1i(t) = instantaneous speed
of processor i at time t (in #unit operations per second). Assumption:
PI_{max}< C*PI_min(t)
Definition: for a computation with duration T:
Total speeb: PI_{tot} = sum{ sum( PI_i(t), t=0..T), 1=0..P)
Average Speed per processor: PI_{ave} = PI_{tot}/P
Work: W = #total number of operations performed
Depth: D = Soperations on a critical path (~parallel "time" on
infinite resources)
For any greedy maximum utilization schedule: makespan <= W/ (p*PI_{ave})
+ (1-1/p)*(D/PI_{ave})

The Work Stealing Algorithm:
A distributed and randomized algorithm that computes a greedy schedule:
-Each processor manages a local stack (depth-first execution)
-When 1idle, a processor steals the topmost task on a remote non-idle
victim processor (randomly chosen)
-Theorem: With good probability,

-f#steals < P*D

—execution time <= W/ (p*PI_{avel) + O(D/Pi_{avel})
—Interest: If W indepenent of p and D is small, work stealing achieves
near-optimal schedule.

Work Stealing Implementation:

efficient policy (close to optimal) <———- scheduling —---> control of the
policy (realisation)

Difficult in general (coarse grain) Expensive 1n
general (fine grain)

But easy if B is small But small overhead

if small number of tasks
Execution time as above (fine grain)
(coarse grain)

If D is small, a work stealing algorithm performs a small number of
steals

=> Work-first principle: "Scheduling overheads should be borne by
the critical path of the computation"[Firggo 28]
Implementation: since all tasks but a few are executed in the local
stack, overhead of task creation should be as close as
possible as seguentaill function call
At any time on any non-idle processcr, efficient local degeneration of
the parallel program in & seguential execuation

Work Stealing implementaions folleowing the work-first principle: Cilk
-Cilk-5 http://supertech.csail.mit.edu/cilk: C extension

-Spawn f(a); sync (serie-parallel programs)

~Reguires a shared-memory machine

-Depth-first execution with synchreonization (on sync) with the end



-spawned tasks are pushed in double-ended gueue
-"Two-clone" compliation strategy [Frigo-Leiserscn—-Randal 98]
-0n a successful steal, a thief executes the continuation on
the topmost ready task
-When the continuation hasn't been stolen, "sync" = nop;
else synchronization with its thief
-Won the 2006 award "Best Combination of Elegance and Performance"

Work Stealing implementaicns following the work-first principle: KAAPI
Kaapi/Athapascan http://kaapi.gforge.inria C++ library
—-Fork<f>()({(a,...) with access mode to parameters (value, read,
write, r/w, cw) specified in f prototype (macro
dataflow programs)
—Supports distributed and shared memory machines; hetercgeneous
processors
-Depth-first (reference order) execution with synchronization on
data access
-Double-end gqueue ( mutual exclusion with compare-and-swap )
—more

N-gueens: Takaken C sequential code parallelized in C++/Kaapi
-T. Gautier & 5. Guelton won the 2006 "Prix special du Jury" for the
best performance at NQueens contest.
—-Some facts[on Grid'5000, a grid of processors of heterogenecus speeds]
-NQueens (21) in 78s on about 1000 processors
-NQueens (22) in 502.9s5 on 1458 processors
—-NQueens (23) in 4435s on 1422 processors [~24 * 10733 solutions]
-0.625% idle time per processor
-<20s to deploy up to 1000 processes on 1000 machine [Taktuk,
Huazrd]
-15% more

Work first principle and adaptability
-Work-first principle: Implicit dynamic choice between two executions:
—a segquential "depth-first" execution of the parallel algorithm
(local, default)
—a parallel "breadth-first" one

Extended work-stealing: How do we get W_1 and W_{infinity} small?
Concurrently sequential and parallel
Based on the work-stealing and the work-first principle:
Instead of optimizing the sequential execution of the best
parallel algorithm, let's optimize the parallel execution
of the best sequential algorithm
Excecute always a seqguential algorithm to reduce prallelism overhead
parallel algorithm is used only if a processor becomes idle (i.e.
workstealing) to extract parallelism from the
remaining work a seguential computation
Assumption: Two concurrent algorithms that are complimentary:
—one sequenial (always performed, the priority
—the other parallel

Extended work-stealing and granulairy
—Scheme of the seugential process: nancloop
While (not completed(Wrem) ) and (next operation hasn't been
stole)
atomic {extract_next k operatoins ; Wrem -= k ;}
process the k opesrations extracted ;
;

-Processor-oblivious algorithm:



~Whatever p is, it performs O(p*D) preemption operations (continuation
faults) -> D should be as small as possible to maximize
both speed-up and locality

Interactive application with time ocnstraint
-Anytime algorithm:
-an be stopped at any time (with a result)

Amortizing the arithmetic of parallelism
Adaptive scheme: extract_seq/nanocloop // extract_par

-ensures an optimal number of operations on 1 processor but no
guarantee of the work preformed on p processors

E.G. (C++ STL): find if(fist, last, predicate)
locates the first element in [First,Last) wverifying the predicate

This may be a drawback:

-unneded processor usage

-undesirable for a library code that may be used in a complex
applicatien with many components

-(or not fair with other users)

-increases the time of the application: any parallelism that
increases executlion time should be avoided

Similar to the nano-loop for the segquential processes: that balances
the —-atomic- local work by the depth of the remaining one.
Here, by amortizing the work induced by the extract_par operation,
ensuring this work to be small enough:
—either wrt the useful work already performed
—0or with respect to the useful work yet to be performed (if known)
—-or both

E.G.: find if(First, Last, predicate):
—only the work already performed is known (on-line)
~then prevent to assign more than alpha(W_{done}) operations ot
work-stealers
—Chpices for alpha(n):
-n/2 similar to Floyd's iteration (approximation ratio = 2)
-n/log(n) : to ensure optimal usags of the work-stealers

Putting things together: Processor -obliviocus prefix computation

The critical path is put onto the parallel algorithm
Analysis:
Execution Time <= 2n/((p+1l)*PI_{avel}) + O(log(n)/PI_{avel})

Conclusion:
—fine grain parallelism enables efficient execution on a small number of
processors
—Efficiency of classical work stealing relies on work-first principle
-Processor Oblivious algorithms based on work-stealing/Work-first
principle

~Based on anytime extraction of parallelism from any sequential
algorithm (may execute different amts of operations)

—-Oblivious: near optimal whatever the execution context is.
-Generic scheme for stream computations:

—-parallelism introduce a copy overhead from local buffers to the
output gzip/compression, MPEG-4/H264



Processor-oblivious parallel
algorithms with provable
performances

Applications
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* Introduction : interactive computation, parallelism and processor oblivious
* Overhead of parallelism : parallel prefix

* Machine model and work-stealing

* Scheme 1: Adaptive parallel algorithms
* Scheme 2; Amortizing the overhead of synchronization (Nano-loop)
* Scheme 3: Amortizing the overhead of parallelism (Macro-loop)

° Putting things together: processor-oblivious prefix computation



[nteractive parallel computation?

Any application is “parallel’:
*composition of several programs / library procedures (possibly concurrent
*each procedure written independently and also possibly parallel itself.

Interactive

Distributed

Simulation

3D-reconstruction .

+ simulation dZcompresseur codec YUV420

sont requis pour visionner cette image.

+ rendering

[B Raffin &E Boyer]
-1 monitor

- 5 cameras,

-6 PCs

.......

A



m —..m _ _ S : —U uo —...Hm from small too large

Parallel chips & multi-core architectures:
- MPSoCs (Multi-Processor Systems-on-Chips) . A
- GPU : graphics processors (and programmable: Shaders; Cuda moxv
- Dual Core processors (Opterons, Itanium, etc.)
- Heteregoneous multi-cores : CPUs + GPUs + DSPs+ FPGAs (Cell)

Commodity SMPs:
- 8 way PCs equipped with multi-core processors (AMD Hypertransport) + 2 GPUs

Clusters:
- 72% of top 500 machines
- Trends: more processing units, faster networks (PCI- Express)
- Heterogeneous (CPUs, GPUs, FPGAS)

Grids:
- Heterogeneous networks
- Heterogeneous administration policies
- Resource Volatility

Dedicated platforms: eg Virtual Reality/Visualization Clusters:
- Scientific Visualization and Computational Steering

- PC clusters + graphics cards + multiple 1/O devices
(cameras, 3D trackers, multi-projector displays)

Grimage platform



Parallelism induces overhead :
e.g. Parallel prefix on fixed architecture

® Prefix problem :

. &
* INPUL : @y, Ay v0x5 8 _
P 0r n = [[ ax
e output : w,, ..., m, with

® Sequential algorithm :
® for (n[0] = a[0], i=1;i<=n; i++) a[i]=nli-1].a [R¢forms only n operatior

® Fine grain om::.m_ _umqm__m_ algorithm :

ag aq 8y aj

vidag o8 mm \, mm \MM >al time = 2. log n
ﬂ&_x ﬁwrn size :.ﬁ performs 2.n ops
s@ S
g Wy v Tpa

Optimal time T, = 2n / (p+1)
but performs 2.n.p/(p+1) ops

Pogtare T2 The Pypalined Sehedilo fos g = 7.



r bound(s) for the prefix

Prefix circuit of depth d
C [Fitch80]
#operations > 2n - d

2n
Qul_l Hv.]@dm

parallel time >




) design a single algorithm that computes efficiently prefix( a )
an arbitrary dynamic_architecture

Sequential uww__m_m_ r\ parallel ™
e - i

parallel
P=max

algorithm

P=100

Which algorithm
to choose ?

Heterogeneous network Multi-user SMP server Grid

Dynamic architecture : non-fixed number of resources, variable speeds
eg: grid, ... but not only: SMP server in multi-users mode



ycessor-oblivious algorithms

/namic architecture : non-fixed number of resources, variable speeds
eg: grid, SMP server in multi-users mode,....

Tedwo sk of workstations

> motivates the design of «processor-oblivious» parallel algorithm that:

+ is independent from the underlying architecture:
no reference to p nor 71(t) = speed of processor i at time t nor ...

+ on a given architecture, has performance guarantees :
behaves as well as an optimal (off-line, non-oblivious) one



Machine model and work stealing

" Heterogeneous machine model and work-depth framework
= Distributed work stealing

= Work-stealing implementation : work first principle

" Examples of implementation and programs:
Cilk , Kaapi/Athapascan

" Application: Nqueens on an heterogeneous grid
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U A %&%»M&&m & _ww.%
model [Bender,Rabin 02] JT(t) = Sﬂmim:mo:m S .me of processor i at time t

(in #unit operations per second )

Assumption : (t) < constant . I1_. (1)

Smk

Jef. for a computation with duration T

* total speed: Il = Xy, p Loco,.,.r TI(Y)
« average speed per processor: I .=l ? P
O/ “Work” W = #total number operations performed

“Depth” D = #operations on a critical path

(~parallel “time” on oo resources)

/

Q For any greedy maximum utilization schedule:
[Graham69, Jaffe80, Bender-Rabin02]

(e
Q\O S\meoD
O

makespan =
P pP m ps P,



A distributed and randomized algorithm that
computes a greedy schedule :

» Each processor manages a local task (depth-first execution)




A distributed and randomized algorithm that compute
a greedy schedule :

> Each processor manages a local stack (depth-first execution)

» When idle, a processor steals the topmost task on a remote -non idle- victim processor
(randomly chosen)

» Theorem: With good probability, [Acar,Blelloch, Blumofe02, BenderRabin02]

» #steals < p.D

%% &p o0
, E +O0¢—=
» execution time pP . eP .0

» Interest:
if Windependent of p and D is small, work stealing achieves near-optimal schedule



K stealing implementation
Scheduling

efficient policy «———
(close to optimal)

» control of the policy

(realisation)

Difficult in general (coarse grain)
But easy if D is small work-steaiing]

%% £ D 0
- S——+0c——-
Executiontime — pP =~ &P _ g

(fine grain)

Expensive in general (fine grain)
But small overhead if a small
number of tasks

(coarse grain)

FD is small, a work stealing algorithm performs a small number of steals

> Work-first principle: “scheduling overheads should be borne by the critical path

f the computation” [Frigo 98]

mplementation: since all tasks but a few are executed in the local stack, overhead
f task creation should be as close as possible as sequential function call

\f any time on any non-idle processor,

efficient local degeneration of the parallel program in a sequential execution



‘k-stealing implementations following
1e work-first principle : Cilk

Cilk-5 nttp://supertech.csail.mit.edu/cilk/ : C extension
= Spawn f(a); sync (serie-parallel programs)
" Requires a shared-memory machine
= Depth-first execution with synchronization (on sync) with the end of a task :
- Spawned tasks are pushed in double-ended queue

= “Two-clone” compilation strategy [Frigo-Leiserson-Randall9g] :
* on a successfull steal, a thief executes the continuation on the topmost ready task ;
* When the continuation hasn't been stolen, “sync” = nop ; else synchronization with its thief

01 cilk int f£ib (int n) 1 int £ib (int n)
2 o
02 .m 3 fib_framae #f; frame pointer
03 1€ mn.- < Nv return n; 4 £ = alloc(sizeof (*f)); allocate frame
5 f->sig = fib_sig; initialize frame
04 else 6 if (n<2) {
7 free(f, sizeof(*f)); Jree frame
05 ._“ 8 return n;
3 W 9 }
06 int x; vy o -
07 11 int x, y;
. 12 f->entry = 1; save PC
08 ® = sSpawn fib AU.I.HV ' 13 f->n = n; save lve vars
s : ‘ 14 =T = f; store frame pointer
09 y = Shawh fib (n-2); 15 push(); push frame
10 16 x = fib (n-1); do C call
17 if (pop(x) == FAILURE) pop frame
11 sync; 18 return 0; frame siolen
19 second spaun
12 20 ; sync is free!
. 21 free(f, sizeof(*f)); free frame
13 return AVn+w«V ! 22 return (x+y) ;
14 } 23 ¥
24 }
15 }

= won the 2006 award "Best Combination of Elegance and Performance” at HPC Challenge Class 2,

SC'06, Tampa, Nov 14 2006 [Kuszmaul] on SGI ALTIX 3700 with 128 bi-Ithanium]



/

k-stealing implementations following
rk-first principle : KAAPI

Kaapi / Athapascan http:/kaapi.gforge.inria : C++ library

= Fork<f>()(a, ...) with access mode to parameters (value;read;write;r/w;cw) specified
in f prototype (macro dataflow programs)

= Supports distributed and shared memory machines; heterogeneous processors
= Depth-first (reference order) execution with synchronization on data access :

*  Double-end queue (mutual exclusion with compare-and-swap)

* on a successfull steal, one-way data communication (write&signal)
i, seruet sun e e -
2 void operator() (Shared r < int > a, S scines M
s Shared z < int »b. 1| | 0 o
4 Shared w < int > r ) B s W
5 [ RS (5. TEEAL) 4 B PaRA1] i § S _
6 1 IR iy e |
7 B
8 struct £ib { heigls || ﬁeiMMM ke
9 void operator () (int n, Shared w<int> ) T - e A n
10 { if (n <2) r.write( n ); L |“quan_a _________________________ !
Ll else . 2
12 { int rl, r2; - H,_LH,.“LE
13 Fork< £ib >() ( n-1, rl ) ; | [Taam T
14 Fork< fib >() ( n-2, r2 ) ; I )
15 Fork< sum >() ( rl, r2, r ) ; T e,
16 } - _"w.,”“s
1 \ - 5 Hand s
18 } ;

(b Shared links

Static scheduling won the 2006 award "Prix special du Jury” for the best performance at NQueens contest, Plugtests-
Grid&Work'06, Nice, Dec.1, 2006 [Gautier-Guelton] on Grid’56000 1458 processors with different speeds.



akaken C sequential code
llelized in C++ /Kaapi

= T. Gautier&S. Guelton won the 2006 award “Prix special du Jury” for the best
performance at NQueens contest, Plugtests- Grid&Work’06, Nice, Dec.1, 200¢

= Some facts [on on Grid’5000, a grid of processors of heterogeneous speeds]
NQueens(21) in 78 s on about 1000 processors
- Nqueens (22 ) in 502.9s on 1458 processors

- Nqueens(23) in 4435s on 1422 processors [~24.10% solutions]

- 0.625% idle time per processor

- < 20s to deploy up to 1000 processes on 1000 machines [Taktuk, Huard]
- 15% of improvement of the sequential due to C++ (template)

Grid’5000 utilization L
during contest

Grids000 Crid Lond Tast day o o

(rsoy OV last hour

Ferient

PR ] (e d] 2 B
W ousar ore [ wige P00 B $pstem Ore O 147 <PU

CPU

Lesd P rots

+ 061 O
D?y:.:.:__w:a._xl,..sﬁIes::.u:.ﬁ&m:

6 instances Nqueens(22)

N 8 &
vm vm B a Network
C Qo =2 < m Orsoy Natvork Tast hour
= e = 9 > e
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& & g8 =2 §
t £ f2 ¢
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Experimental results on SOFA [CIMIT-ETZH-INRI.
[Allard 06]
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Work-first principle and adaptability

Work-first principle: -implicit- dynamic choice between two executions :
*  asequential “depth-first” execution of the parallel algorithm (local, default) ;
° a parallel “breadth-first” one.

Choice 1s performed at runtime, depending on resource idleness:
rare event if Depth 1s small to Work
WS adapts parallelism to processors with practical provable performance

. Processors with changing speeds / load (data, user processes, system, users,
° Addition of resources (fault-tolerance [Cilk/Porch, Kaapi, ...])

The choice is justified only when the sequential execution of the parallel
algorithm is an efficient sequential algorithm:

*  Parallel Divide&Conquer computations

-> But, this may not be general in practice



ow to get both optimal work W, and W._ small?

*  General approach: to mix both
- a sequential algorithm with optimal work W,

e and a fine grain parallel algorithm with minimal critical time W_

' Folk technique : parallel, than sequential

* Parallel algorithm until a certain « grain »; then use the sequential one
« Drawback : W_increases ;0) ...and, also, the number of steals

» Work-preserving speed-up technique sini-ransa) S€quential, then parallel Cascading wajasz :
Careful interplay of both algorithms to build one with both

W_small and W, =0(W,,)

* Use the work-optimal sequential algorithm to reduce the size

* Then use the time-optimal parallel algorithm to decrease the time
* Drawback : sequential at coarse grain and parallel at fine grain ;0(



-xtended work-stealing: concurrently sequential and paralle

Based on the work-stealing and the Work-first principle :

Instead of optimizing the sequential execution of the best parallel algorithm,
let optimize the parallel execution of the best sequential algorithm

Execute always a sequential algorithm to reduce parallelism overhead

Hvom_‘m__m_m_@o_%:qimcmma os_ﬂ :m_oﬂo.ommmo:omoo:dmmE_mcm%o%ﬂm.m::g_moo:mm_moom_..
to extract parallelism from the remaining work a sequential computation

Assumption : two concurrent algorithms that are complementary:

° - one sequential : SeqCompute (always performed, the priority)
- the other parallel, fine grain : LastPartComputation (often not performed)

SeqCompute




—xtended work-stealing : concurrently sequential and parall

Based on the work-stealing and the Work-first principle :

Instead of optimizing the sequential execution of the best parallel algorithm,
let optimize the parallel execution of the best sequential algorithm

Execute always a sequential algorithm to reduce parallelism overhead

Uvmﬁm__m_m_ooﬁ::ﬁ:_mcmmq o:_w :on.ommmoﬁcmooBmmE_mem%o%ﬂmm::@oﬁmoo:mm_moom_..
to extract parallelism from the remaining work a sequential computation

Assumption : two concurrent algorithms that are complementary:

° - one sequential : SeqCompute (always performed, the priority)
- the other parallel, fine grain : LastPariComputation (often not performed)

. merge/jump |
SeqCompute_main " Seq :

——preempt ===~~~

— S ENS IR I RS e

|
SeqCompute [~ complete

) operations to ensure non-idleness of the victim

* Once SeqCompute main completes, it becomes a work-stealer



Extended work-stealing and granulatity

Scheme of the sequential process : nanoloop
While (not completed(Wrem) ) and (next_operation hasn’t been stolen)

{
atomic { extract_next k operations ; Wrem —-= k ; 1}
process the k operations extracted ;

}
Processor-oblivious algorithm
" Whatever pis, it performs O( p.D ) preemption operations (« continuation faults »)
-> D should be as small as possible to maximize both speed-up and locality

= |f no steal occurs during a (sequential) computation, then its arithmetic work is optim

to the one W, of the sequential algorithm (no spawn/fork/copy )

-> W should be as close as possible to W,

Choosing k = Depth(W,,,, ) does not increase the depth of the parallel algorithn

while ensuring O(W / D ) atomic operations :
since D > log, W thenifp=1. W~ W,,

Implementation : atomicity in nano-loop based on efficient local lock

Self-adaptive granularity



tive application with time constraint

Anytime Algorithm:
* Can be stopped at any time (with a result)
* Result quality improves as more time is allocated

In Computer graphics, anytime algorithms are common:

LLevel of Detail algorithms (time budget, triangle budget, etc...)
Example: Progressive texture loading, triangle decimation (Google Earth)

Anytime processor-oblivious algorithm:
On p processors with average speed 77, it outputs in a fixed time T

a result with the same quality than
a2 sequential processor with speed 17, in time p./1,

ve’

ve*

Example: Parallel Octree computation for 3D Modeling



arallel 3D Modeling

3D Modeling :

build a 3D model of a scene from a set of calibrated images

On-line 3D modeling for interactions: 3D modeling from
multiple video streams (30 fps)




TT 1T

e r
SEERNas

Level 0

Depth first
+ iterative deepening

A classical recursive anyti

e

State of a cube;:

- Grey: mixed => split
- Black: full  : stop
- White: empty : stop

[L. Soares 06]
me 3D modeling algorithm.

Level 2

@@mwu@mw 78

Width first

At termination: quick test to decide all grey cubes time control




first parallel octree carving

ell suited to work-stealing

-Small critical path, while huge amount of work (eg. D =8, W = 164 000)
- non-predictable work, non predictable grain :

ir cache locality, each level is processed by a self-adaptive grain :
“sequential iterative” / "parallel recursive split-half”

stree needs to be “balanced” when stopping:
* Serially computes each level (with small overlap)
* Time deadline ao Bmv Bm:m@ma by signal _0388_

Unbalanced Balanced

ieorem: W.r.t the adaptive in time T on p procs., the sequential algorithm:
- goes at most one level deeper : |d,-d | <1;

- computes at most : ng<n, + O(logn,) .



Results

[L. Soares 06]
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8 cameras, levels 2 to 10

- 16 core Opteron machine, 64 images
- Sequential: 269 ms, 16 Cores: 24 ms

- 8 cores: about 100 steals (167 000 grey cells)

Preliminary result: CPUs+GPU
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64 cameras, levels 2 to 7

-1 GPU + 16 CPUs
- GPU programmed in OpenGL
- efficient coupling till 8 but

e Time GPU
¢ Time CPU
v |deal

does not scale

log (Time (ms) )




mortizing the arithmetic overhead
Cm .m_.___.=m__m=..

Adaptive scheme : extract_seq/nanoloop // extract par
» ensures an optimal number of operation on 1 processor
* but no guarantee on the work performed on p processors

Eg (C++ STL): find_if (first, last, predicate)
locates the first element in [First, Last) verifying the predicate

This may be a drawback :
* unneeded processor usage ;

* undesirable for a library code that may be used in a complex application,
with many components
* (or not fair with other users)
» increases the time of the application :
*any parallelism that increases the execution time should be avoided

Motivates the building of work-optimal parallel adaptive algorithm
(processor oblivious)



Similar to nano-loop for the sequential process :
» that balances the -atomic- local work by the depth of the remaindering one

Here, by amortizing the work induced by the extract_par operation,
ansuring this work to be small enough :

» Either w.r.t the -useful- work already performed

» Or with respect to the - useful - work yet to performed (if known)
* or both.

Eg : find_if (first, last, predicate) :
» only the work already performed is known (on-line)
» then prevent to assign more than a(W,,..) operations to work-stealers
» Choices for o n) :
*n/2 : similar to Floyd’s iteration ( approximation ratio = 2)
* n/log* n : to ensure optimal usage of the work-stealers



= .ﬂ |S. Guelton]

n find _i

N doubles : time predicate ~ 0.31 ms
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Parallel algorithm based on :
- compute-seq / extract-par scheme
- nano-loop for compute-seq

- macro-loop for extract-par



vious Prefix on 3 proc.

Sequential

Parallel

Vork-
aaler 1

VOrk- — —
saler 2

time
32



-Oblivious Prefix on 3 proc.

Sequential

ain
2q.
Parallel
ai=a5*..." ai
a; a a, a8, ;08 a

2aler 1

Work-

tealer 2 )

time

33



P-Oblivious Prefix on 3 proc.

Sequential

ain > |
2q. 1
Preempt \ Ty oL
\ 8
Parallel
. 8. A, a. Q_Hmm*...*m_
Vork-
2aler 1
Bi=a9*...*ai
P
Work-
tealer 2 P
C 1z 4

34



-Oblivious Prefix on 3 proc.

Sequential

Ns@y 8 8y 8y 7— T o 7

ain
2q.
Preempt | 7rg B,
Parallel
a. a, a, a, oi=ab*..."ai
Vork- -——
2aler 1
ai
Work-
tealer 2




-Oblivious Prefix on 3 proc.

Sequential

ain
2.
Parallel
ai=ab*...*ai
Vork-
zaler 1
*Uc
Bi=a9*...*ai
P,
Work-
tealer 2 .




-Oblivious Prefix on 3 proc.

Sequential

ain
3q.
S
Implicit critical path on the sequential process To=7 T, =6
Parallel
a.a. a oi=ab*...*ai
Vork-
2aler 1
Bi=a9*...*ai
Work-
tealer 2




nalysis of the algorithm

J_ O _0@3

Execution time < | |
ave

Lower bound
Sketch of the proof :
Dynamic coupling of two algorithms that complete simultaneously:

= Sequential: (optimal) number of operations S on one processor

= Extract_par : work stealer perform X operations on other processors

- dynamic splitting always possible till finest grain BUT local sequential
* Critical path small (eg :log X witha W=n/log* n macroloop )
¢ Each non constant time task can potentially be splitted (variable speeds)

|m I ;vA‘ log X
ls = MManis and \.NJB — (p—1).Mgve -0 A _Jw\emv

ave

= Algorithmic scheme ensures T, = T + O(log X)

=> enables to bound the whole number X of operations performed
and the overhead of parallelism = (s+X) - #ops_optimal



LES =_ (S H\ N [D Traore]

Prefix sum of 8.10° double on a SMP 8 procs (1A64 1.5GHz/ linux)

5 T T

. _ seqs mmn:__m_..ﬂwww tine (5) e
static grain: average tine (g) we——

Wm—.—m—@ user OON—HONH adapt grain: average Line {g) s

 Pure sequential

Tinels]

Time (s)

o Optimal off-line on p procs

J
Oblivious
" _ _ _ _ _ ,
1 2 3 4q 5 B 7 8
#processors e

Single-usercontext : processor-oblivious prefix achieves near-optimal performance :
- close to the lower bound both on 1 proc and on p processors

- Less sensitive to system overhead : even better than the theoretically “optimal” off-line parallel algorithm on p proc:



[D Traore]

ults 2/2

Prefix sum of 8.10¢ double on a SMP 8 procs (1A64 1.5GHz/ linux)

1 . ' ' mn_mvn. grain: average tine (5) e
ZF——H#I:@@‘.‘ no-ﬂ—.‘mxﬂ . adapt, grain: maxinal time (g} ———
adapt, grain: ninimal tine (s} ——
7 F static grain: average tine (g5) =

static grain: naxinal tine {(s) -
static grain: nininal tine (5) ——

External charge
(9-p external processes)

Time (s)

' Obliv :

ious

1 2 3 4 L 6 7 8

#processors

Multi-user context :
Additional external charge: (9-p) additional external dummy processes are concurrently executed

Processor-oblivious prefix computation is always the fastest
15% benefit over a parallel algorithm for p processors with off-line schedule,



1sion

Fine grain parallelism enables efficient execution on a small number of
processors

= |nterest : portability ; mutualization of code ;
= Drawback : needs work-first principle => algorithm design

Efficiency of classical work stealing relies on Work-first principle :

= Implicitly defenerates a parallel algorithm into a sequential efficient ones ;

= Assumes that parallel and sequential algorithms perform about the same amount of
operations

Processor Oblivious algorithms based on Work-first principle

* Based on anytime extraction of parallelism from any sequential algorithm (may
execute different amount of operations) ;

= Oblivious: near-optimal whatever the execution context is.

Generic scheme for stream computations :

parallelism introduce a copy overhead from local buffers to the output
gzip / compression, MPEG-4 / H264



Kaapi (kaapi.gforce.inria.fr)

7277 o * Work stealing / work-first principle

. ¢ Dynamics Macro-dataflow :

s e D) partitioning (Metis, ...)

QuickTime® et un
dZcompr odec YUV420
SONL FEqUIS pour Visionner cetle image,

[E Boyer, B Raffin 2006]

«_ ' * Fault Tolerance (add/del resources)

FlowVR (flowvr.sf.net)
* Dedicated to interactive applicatioi
* Static Macro-dataflow
* Parallel Code coupling

Thank you |



Back slides
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ial/parallel fixed/ adaptive

m Sequentiel || Statique Adaptatif

|  p=2 | p=4 | p=6 | p=7 | p=B p=8

. Minimum 21.83 18,16 | 15,89 | 14,99 | 13,92 | 12,51 876 |
Maximum 23,34 2073 | 17.66 | 16,51 | 1573 | 14,43 12,70

~ Moyenne 22 57 19,50 | 17,10 | 15,58 | 14,84 | 13,17 11,14
Mediane 22 58 1964 | 17,38 | 16,57 | 14,63 | 13,11 11,01

On each of the 10 executions, adaptive completes first



Ive prefix : some experiments

Prefix of 10000 elements on a SMP 8 procs (IA64 / linux)

20 T T T
_ adapt, grain average tine (g) e

adapt, graini nawinal tine {(g) -
adapt, grain: nininal tine (s)
static grain: average btine (s) s
static graini naxinal tine (g} e
static grain; nininal tine (g}

18

10 b,

N ¢ Parallel

\\\4

Adaptive

o I 1 I i I
1 2 3 4 L] ]

#processors

Single user context

Adaptive is equivalent to:
sequential on | proc
optimal parallel-2 proc. on 2 processors

optimal parallel-8 proc. on 8 processors

20

adapt. grain: average tine (5) =———
adapt, grain: naxinal tine (s} ——
adapt, grain: nininal time (s} ——
static grain: average tine (5) ==
static grain: maxinal time (s}

static grain: nininal timne (g} —

15

External charge

10 f

Time (s)

Adaptive o

2 3 4 5 [ 7 8

#processors

Multi-user context
Adaptive is the fastest

15% benefit over a static grain algorithm



[ith * = double sum (i=rii-11 + xi1)

-inest “grain” limited to 1 vmom 16384 octets = 2048 double

m;w_u_. grain: wcmﬂwmm __..v:m auv
adapt, mﬁmbz naxinal tine (5}
adapt. w_,mu: nininal tine (s}

mu_mvﬂ grain: mcn?..wn tine (g) s
adapt. grain: maxinal tine (s) ——

adapt, prain: nininal timne {(s) ——
static graini average tine (g) w=—— static grain: average tine (s) we=——
static grain: maxinal time {g) static grain: naxinal tine {s) ——
static grain: nininal tine {8} ——

static grain: ninimal tine {5}

Tinels]

L L 1 L
1 2 3 4 5 6 7 8 8
Hunbre de processeurs

Hunbre de processeurs

Single user Processors with variable speeds

Remark for n=4.096.000 doubles
- “pure” sequential : 0,20 s
- minimal "grain” = 100 doubles : 0.26s on 1 proc
and 0.175 on 2 procs (close to lower bound)
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latforms

als

Icluster 2 :

- 110 dual ltanium bi-processors with Myrinet network
Grlmage (“Grappe” and Image):
Camera Network
54 processors (dual processor cluster)
Dual gigabits network
16 projectors display wall
Grids:

- Regional: Ciment

- National: Grid5000

* Dedicated to CS experiments

SMPs:

- 8-way ltanium (Bull novascale)

- 8-way dual-core Opteron + 2 GPUs
MPSoCs

- Collaborations with ST Microelectronics on STH




= Two main performance criteria:

- Frequency (refresh rate)
* Visualization: 30-60 Hz
° Haptic : 1000 Hz
- Latency (makespan for one iteration)
* Object handling: 75 ms
= A classical programming approach: data-flow model
- Application = static graph
Edges: FIFO connections for data transfert
Vertices: tasks consuming and producing data
Source vertices: sample input signal (cameras)
Sink vertices: output signal (projector)
= One challenge:
Good mapping and scheduling of tasks on process

Visualization

ors . ¥




