Note Taker Checklist Form -MSRI

/
" P L A L N
: } ’ / PR =
LA LA gy
Ay I’ y | L

Name :
E-mail Address/ Phone#: S v/ ¢ NSy . Edo
4 r‘ ‘

Talk Title and Workshop assigned to:) - a' g f

g ALF N f all el Lompurat ya . Jufgirto T / EIeem
Lecturer (Full name): Jean — [54 [| _
Date & Timeof Event: || . 7C . len 29y 200 F

Check List:

(9" Introduce yourself to the lecturer prior to lecture. Tell them that you will be
the note taker, and that you will need to make copies of their own notes, if
any.

(q/ Obtain all presentation materials from lecturer (i.e. Power Point files, etc).
This can be done either before the lecture is to begin or after the lecture:
please make arrangements with the lecturer as to when yon can do this.

("f Take down all notes from media piovided (blackboard, overhead, etc.)

() Gather all other lecture materials (i.e. Handouts, etc.)

V) Scan all materials on PDF scanner in 2™ floor lab (assistance can be
provided by Computing Staff) — Scan this sheet first, then materials. In the
subject heading, enter the name of the speaker and date of their talk.

Please do NOT use pencil or colored pens other than black when taking notes as the
scanner has a difficult time scanning pencil and other colors.

Please fill in the following after the lecture is done:

1. List 6-12 lecture keywords: W/ K- > hare, worl — First
v oK —sit®&l, famllel precescs;, ZokiN NS TAE Yasme
]
2. Please summarize the lecture in 5 or less sentences.
VY ks Flag [’".;-}.f‘e_{* Qe lhem& mang €g dent al colgor Fhm,
i Poldce,) - fyf: | \Arc B r‘—- ~ anth
E o . L op Le [ed # —
L :‘,_ ner el A g at G wevl+oal _'.b_,_.._,- _ ’av -35.!15-',_ (74 i [
2 zed aloals Fhos !

Once the materials on check list above are gathered, please scan ALL materials and send to the
Computing Department. Return this form to Larry Patague, Head of Computing (rim 2i4)

For Video Tapings-MSRI 9/2006

11:30 a.m.
Processor-0Oblivious Parallel Processing with Provable Performances

Jean—-Louis Roch

Overview:

-Introduction

-Machine model and werk-stealing

-Cheme 1 Adaptive Parallel algorithms

—Scheme 2 Nano-loop

-Scheme 3 Amoritizing the overhead of parallelism
-Putting things together

Interactive Parallel Computation:

Any application is "parallel":

—-composition of several programs / library procedures (possibly
concurrent)

-each procedure written independently and also possibly parallel, itself

Parallel Interactive Application:
—Human in the loop
-Prallel machines (cluster) to enable large interactive applications
-Two main performance criteria:
-Frequency (refresh rate)
—Visualization: 30-60Hz
—Haptic: 1000Hz
—Latency (makespan for one iteration)
—object handling: 75 ms

New Parallel Supports (from small to large)
-Multi-core architectures
—Dual Core procssors
-Dual Core graphics processors
-Heterogeneous multi-cores
-MPSoCs
~-Commodity SMPs
-8-way PCs equipped with multicore processors (AMD Hypertransport)
+ 2 GPUs
~Clusters
-72% of top 500 machines
-Trends: more processing units, faster networks (PCI-Express)
~Heterogeneous (CPUs, GPUs, FPGAs)
-Grids
-Heterogeneous networks
-Heterogeneous administration policies
—-Resource wvolatility
—Virtual Reality / Visualization Clusters
—Virtual Reality, Scientific Visualization and Computaticnal
Steering
-PC clusters + graphics cards + multiple I/0 devices (cameras, 3D
trackres, etc.)

Parallel induces overhead: E.G. Parallel prefix on fixed architecture
Prefix problem: Input a 0, ..., a_n. Qutput : sequential products.
Serial performs only n opreations, serial performs 2n

but 2*log(n) time.

Optimal time T_p = 2Zn/{p+l) but performs Znp/(p+l) operations.

Lower Bound for the Prefix: look at the multiplication circuilt as a
binary tree

The problem: To design a single algeorithm that computes eff

[N

ciently

prefix (a) on an aritrary dynamic architecture

Dynamic Architecutre: non-fixed number of resocurces, varible speeds.
e.g. grid, ... but not only: SMP server in multi-users mode.

Processors-0blivious Algorithms -- that's what what we want (7)

Machine Model and Work Stealing
-Heterogeneous machine model and work-depth framework
-Distributed work stealing

Heterogenous Processors, work and depth:
Processor speeds are assumed to change arbitrarily and adversarily.
Model [Bender, Rabin 02] PI_1i(t) = instantaneous speed
of processor i at time t (in #unit operations per second). Assumption:
PI_{max}< C*PI_min(t)
Definition: for a computation with duration T:
Total speeb: PI_{tot} = sum{ sum(PI_i(t), t=0..T), 1=0..P)
Average Speed per processor: PI_{ave} = PI_{tot}/P
Work: W = #total number of operations performed
Depth: D = Soperations on a critical path (~parallel "time" on
infinite resources)
For any greedy maximum utilization schedule: makespan <= W/ (p*PI_{ave})
+ (1-1/p)*(D/PI_{ave})

The Work Stealing Algorithm:
A distributed and randomized algorithm that computes a greedy schedule:
-Each processor manages a local stack (depth-first execution)
-When 1idle, a processor steals the topmost task on a remote non-idle
victim processor (randomly chosen)
-Theorem: With good probability,

-f#steals < P*D

—execution time <= W/ (p*PI_{avel) + O(D/Pi_{avel})
—Interest: If W indepenent of p and D is small, work stealing achieves
near-optimal schedule.

Work Stealing Implementation:

efficient policy (close to optimal) <———- scheduling —---> control of the
policy (realisation)

Difficult in general (coarse grain) Expensive 1n
general (fine grain)

But easy if B is small But small overhead

if small number of tasks
Execution time as above (fine grain)
(coarse grain)

If D is small, a work stealing algorithm performs a small number of
steals

=> Work-first principle: "Scheduling overheads should be borne by
the critical path of the computation"[Firggo 28]
Implementation: since all tasks but a few are executed in the local
stack, overhead of task creation should be as close as
possible as seguentaill function call
At any time on any non-idle processcr, efficient local degeneration of
the parallel program in & seguential execuation

Work Stealing implementaions folleowing the work-first principle: Cilk
-Cilk-5 http://supertech.csail.mit.edu/cilk: C extension

-Spawn f(a); sync (serie-parallel programs)

~Reguires a shared-memory machine

-Depth-first execution with synchreonization (on sync) with the end

-spawned tasks are pushed in double-ended gueue
-"Two-clone" compliation strategy [Frigo-Leiserscn—-Randal 98]
-0n a successful steal, a thief executes the continuation on
the topmost ready task
-When the continuation hasn't been stolen, "sync" = nop;
else synchronization with its thief
-Won the 2006 award "Best Combination of Elegance and Performance"

Work Stealing implementaicns following the work-first principle: KAAPI
Kaapi/Athapascan http://kaapi.gforge.inria C++ library
—-Fork<f>()({(a,...) with access mode to parameters (value, read,
write, r/w, cw) specified in f prototype (macro
dataflow programs)
—Supports distributed and shared memory machines; hetercgeneous
processors
-Depth-first (reference order) execution with synchronization on
data access
-Double-end gqueue (mutual exclusion with compare-and-swap)
—more

N-gueens: Takaken C sequential code parallelized in C++/Kaapi
-T. Gautier & 5. Guelton won the 2006 "Prix special du Jury" for the
best performance at NQueens contest.
—-Some facts[on Grid'5000, a grid of processors of heterogenecus speeds]
-NQueens (21) in 78s on about 1000 processors
-NQueens (22) in 502.9s5 on 1458 processors
—-NQueens (23) in 4435s on 1422 processors [~24 * 10733 solutions]
-0.625% idle time per processor
-<20s to deploy up to 1000 processes on 1000 machine [Taktuk,
Huazrd]
-15% more

Work first principle and adaptability
-Work-first principle: Implicit dynamic choice between two executions:
—a segquential "depth-first" execution of the parallel algorithm
(local, default)
—a parallel "breadth-first" one

Extended work-stealing: How do we get W_1 and W_{infinity} small?
Concurrently sequential and parallel
Based on the work-stealing and the work-first principle:
Instead of optimizing the sequential execution of the best
parallel algorithm, let's optimize the parallel execution
of the best sequential algorithm
Excecute always a seqguential algorithm to reduce prallelism overhead
parallel algorithm is used only if a processor becomes idle (i.e.
workstealing) to extract parallelism from the
remaining work a seguential computation
Assumption: Two concurrent algorithms that are complimentary:
—one sequenial (always performed, the priority
—the other parallel

Extended work-stealing and granulairy
—Scheme of the seugential process: nancloop
While (not completed(Wrem)) and (next operation hasn't been
stole)
atomic {extract_next k operatoins ; Wrem -= k ;}
process the k opesrations extracted ;
;

-Processor-oblivious algorithm:

~Whatever p is, it performs O(p*D) preemption operations (continuation
faults) -> D should be as small as possible to maximize
both speed-up and locality

Interactive application with time ocnstraint
-Anytime algorithm:
-an be stopped at any time (with a result)

Amortizing the arithmetic of parallelism
Adaptive scheme: extract_seq/nanocloop // extract_par

-ensures an optimal number of operations on 1 processor but no
guarantee of the work preformed on p processors

E.G. (C++ STL): find if(fist, last, predicate)
locates the first element in [First,Last) wverifying the predicate

This may be a drawback:

-unneded processor usage

-undesirable for a library code that may be used in a complex
applicatien with many components

-(or not fair with other users)

-increases the time of the application: any parallelism that
increases executlion time should be avoided

Similar to the nano-loop for the segquential processes: that balances
the —-atomic- local work by the depth of the remaining one.
Here, by amortizing the work induced by the extract_par operation,
ensuring this work to be small enough:
—either wrt the useful work already performed
—0or with respect to the useful work yet to be performed (if known)
—-or both

E.G.: find if(First, Last, predicate):
—only the work already performed is known (on-line)
~then prevent to assign more than alpha(W_{done}) operations ot
work-stealers
—Chpices for alpha(n):
-n/2 similar to Floyd's iteration (approximation ratio = 2)
-n/log(n) : to ensure optimal usags of the work-stealers

Putting things together: Processor -obliviocus prefix computation

The critical path is put onto the parallel algorithm
Analysis:
Execution Time <= 2n/((p+1l)*PI_{avel}) + O(log(n)/PI_{avel})

Conclusion:
—fine grain parallelism enables efficient execution on a small number of
processors
—Efficiency of classical work stealing relies on work-first principle
-Processor Oblivious algorithms based on work-stealing/Work-first
principle

~Based on anytime extraction of parallelism from any sequential
algorithm (may execute different amts of operations)

—-Oblivious: near optimal whatever the execution context is.
-Generic scheme for stream computations:

—-parallelism introduce a copy overhead from local buffers to the
output gzip/compression, MPEG-4/H264

Processor-oblivious parallel
algorithms with provable
performances

Applications

Jean-Louis Roch

Lab. Informatique Grenoble, INRIA, France

. . 7 IS FTUT NATIONAL i
v B, Lakeratdlia 3 T — _zw_ﬁ_"h” zw_:_u:m_ 58 oe seonemone mi UNIVERSITE
A Infarmatiue et wwuwﬂ.%mmmwwnzm diysbciiigun INENINATHONE 1.

JOSEPH FOURI
de Grenoble EN AVTOMATIOUE SCIENCES TECHNOLOGIE MED

\ Distribution . g M, INRIA

* Introduction : interactive computation, parallelism and processor oblivious
* Overhead of parallelism : parallel prefix

* Machine model and work-stealing

* Scheme 1: Adaptive parallel algorithms
* Scheme 2; Amortizing the overhead of synchronization (Nano-loop)
* Scheme 3: Amortizing the overhead of parallelism (Macro-loop)

° Putting things together: processor-oblivious prefix computation

[nteractive parallel computation?

Any application is “parallel’:
*composition of several programs / library procedures (possibly concurrent
*each procedure written independently and also possibly parallel itself.

Interactive

Distributed

Simulation

3D-reconstruction .

+ simulation dZcompresseur codec YUV420

sont requis pour visionner cette image.

+ rendering

[B Raffin &E Boyer]
-1 monitor

- 5 cameras,

-6 PCs

.......

A

m —..m _ _ S : —U uo —...Hm from small too large

Parallel chips & multi-core architectures:
- MPSoCs (Multi-Processor Systems-on-Chips) . A
- GPU : graphics processors (and programmable: Shaders; Cuda moxv
- Dual Core processors (Opterons, Itanium, etc.)
- Heteregoneous multi-cores : CPUs + GPUs + DSPs+ FPGAs (Cell)

Commodity SMPs:
- 8 way PCs equipped with multi-core processors (AMD Hypertransport) + 2 GPUs

Clusters:
- 72% of top 500 machines
- Trends: more processing units, faster networks (PCI- Express)
- Heterogeneous (CPUs, GPUs, FPGAS)

Grids:
- Heterogeneous networks
- Heterogeneous administration policies
- Resource Volatility

Dedicated platforms: eg Virtual Reality/Visualization Clusters:
- Scientific Visualization and Computational Steering

- PC clusters + graphics cards + multiple 1/O devices
(cameras, 3D trackers, multi-projector displays)

Grimage platform

Parallelism induces overhead :
e.g. Parallel prefix on fixed architecture

® Prefix problem :

. &
* INPUL : @y, Ay v0x5 8 _
P 0r n = [[ax
e output : w,, ..., m, with

® Sequential algorithm :
® for (n[0] = a[0], i=1;i<=n; i++) a[i]=nli-1].a [R¢forms only n operatior

® Fine grain om::.m_ _umqm__m_ algorithm :

ag aq 8y aj

vidag o8 mm \, mm \MM >al time = 2. log n
ﬂ&_x ﬁwrn size :.ﬁ performs 2.n ops
s@ S
g Wy v Tpa

Optimal time T, = 2n / (p+1)
but performs 2.n.p/(p+1) ops

Pogtare T2 The Pypalined Sehedilo fos g = 7.

r bound(s) for the prefix

Prefix circuit of depth d
C [Fitch80]
#operations > 2n - d

2n
Qul_l Hv.]@dm

parallel time >

) design a single algorithm that computes efficiently prefix(a)
an arbitrary dynamic_architecture

Sequential uww__m_m_ r\ parallel ™
e - i

parallel
P=max

algorithm

P=100

Which algorithm
to choose ?

Heterogeneous network Multi-user SMP server Grid

Dynamic architecture : non-fixed number of resources, variable speeds
eg: grid, ... but not only: SMP server in multi-users mode

ycessor-oblivious algorithms

/namic architecture : non-fixed number of resources, variable speeds
eg: grid, SMP server in multi-users mode,....

Tedwo sk of workstations

> motivates the design of «processor-oblivious» parallel algorithm that:

+ is independent from the underlying architecture:
no reference to p nor 71(t) = speed of processor i at time t nor ...

+ on a given architecture, has performance guarantees :
behaves as well as an optimal (off-line, non-oblivious) one

Machine model and work stealing

" Heterogeneous machine model and work-depth framework
= Distributed work stealing

= Work-stealing implementation : work first principle

" Examples of implementation and programs:
Cilk , Kaapi/Athapascan

" Application: Nqueens on an heterogeneous grid

ITDCRISOL-SN

U A %&%»M&&m & _ww.%
model [Bender,Rabin 02] JT(t) = Sﬂmim:mo:m S .me of processor i at time t

(in #unit operations per second)

Assumption : (t) < constant . I1_. (1)

Smk

Jef. for a computation with duration T

* total speed: Il = Xy, p Loco,.,.r TI(Y)
« average speed per processor: I .=l ? P
O/ “Work” W = #total number operations performed

“Depth” D = #operations on a critical path

(~parallel “time” on oo resources)

/

Q For any greedy maximum utilization schedule:
[Graham69, Jaffe80, Bender-Rabin02]

(e
Q\O S\meoD
O

makespan =
P pP m ps P,

A distributed and randomized algorithm that
computes a greedy schedule :

» Each processor manages a local task (depth-first execution)

A distributed and randomized algorithm that compute
a greedy schedule :

> Each processor manages a local stack (depth-first execution)

» When idle, a processor steals the topmost task on a remote -non idle- victim processor
(randomly chosen)

» Theorem: With good probability, [Acar,Blelloch, Blumofe02, BenderRabin02]

» #steals < p.D

%% &p o0
, E +O0¢—=
» execution time pP . eP .0

» Interest:
if Windependent of p and D is small, work stealing achieves near-optimal schedule

K stealing implementation
Scheduling

efficient policy «———
(close to optimal)

» control of the policy

(realisation)

Difficult in general (coarse grain)
But easy if D is small work-steaiing]

%% £ D 0
- S——+0c——-
Executiontime — pP =~ &P _ g

(fine grain)

Expensive in general (fine grain)
But small overhead if a small
number of tasks

(coarse grain)

FD is small, a work stealing algorithm performs a small number of steals

> Work-first principle: “scheduling overheads should be borne by the critical path

f the computation” [Frigo 98]

mplementation: since all tasks but a few are executed in the local stack, overhead
f task creation should be as close as possible as sequential function call

\f any time on any non-idle processor,

efficient local degeneration of the parallel program in a sequential execution

‘k-stealing implementations following
1e work-first principle : Cilk

Cilk-5 nttp://supertech.csail.mit.edu/cilk/ : C extension
= Spawn f(a); sync (serie-parallel programs)
" Requires a shared-memory machine
= Depth-first execution with synchronization (on sync) with the end of a task :
- Spawned tasks are pushed in double-ended queue

= “Two-clone” compilation strategy [Frigo-Leiserson-Randall9g] :
* on a successfull steal, a thief executes the continuation on the topmost ready task ;
* When the continuation hasn't been stolen, “sync” = nop ; else synchronization with its thief

01 cilk int f£ib (int n) 1 int £ib (int n)
2 o
02 .m 3 fib_framae #f; frame pointer
03 1€ mn.- < Nv return n; 4 £ = alloc(sizeof (*f)); allocate frame
5 f->sig = fib_sig; initialize frame
04 else 6 if (n<2) {
7 free(f, sizeof(*f)); Jree frame
05 ._“ 8 return n;
3 W 9 }
06 int x; vy o -
07 11 int x, y;
. 12 f->entry = 1; save PC
08 ® = sSpawn fib AU.I.HV ' 13 f->n = n; save lve vars
s : ‘ 14 =T = f; store frame pointer
09 y = Shawh fib (n-2); 15 push(); push frame
10 16 x = fib (n-1); do C call
17 if (pop(x) == FAILURE) pop frame
11 sync; 18 return 0; frame siolen
19 second spaun
12 20 ; sync is free!
. 21 free(f, sizeof(*f)); free frame
13 return AVn+w«V ! 22 return (x+y) ;
14 } 23 ¥
24 }
15 }

= won the 2006 award "Best Combination of Elegance and Performance” at HPC Challenge Class 2,

SC'06, Tampa, Nov 14 2006 [Kuszmaul] on SGI ALTIX 3700 with 128 bi-Ithanium]

/

k-stealing implementations following
rk-first principle : KAAPI

Kaapi / Athapascan http:/kaapi.gforge.inria : C++ library

= Fork<f>()(a, ...) with access mode to parameters (value;read;write;r/w;cw) specified
in f prototype (macro dataflow programs)

= Supports distributed and shared memory machines; heterogeneous processors
= Depth-first (reference order) execution with synchronization on data access :

* Double-end queue (mutual exclusion with compare-and-swap)

* on a successfull steal, one-way data communication (write&signal)
i, seruet sun e e -
2 void operator() (Shared r < int > a, S scines M
s Shared z < int »b. 1| | 0 o
4 Shared w < int > r) B s W
5 [RS (5. TEEAL) 4 B PaRA1] i § S _
6 1 IR iy e |
7 B
8 struct £ib { heigls || ﬁeiMMM ke
9 void operator () (int n, Shared w<int>) T - e A n
10 { if (n <2) r.write(n); L |“quan_a _________________________ !
Ll else . 2
12 { int rl, r2; - H,_LH,.“LE
13 Fork< £ib >() (n-1, rl) ; | [Taam T
14 Fork< fib >() (n-2, r2) ; I)
15 Fork< sum >() (rl, r2, r) ; T e,
16 } - _"w.,”“s
1 \ - 5 Hand s
18 } ;

(b Shared links

Static scheduling won the 2006 award "Prix special du Jury” for the best performance at NQueens contest, Plugtests-
Grid&Work'06, Nice, Dec.1, 2006 [Gautier-Guelton] on Grid’56000 1458 processors with different speeds.

akaken C sequential code
llelized in C++ /Kaapi

= T. Gautier&S. Guelton won the 2006 award “Prix special du Jury” for the best
performance at NQueens contest, Plugtests- Grid&Work’06, Nice, Dec.1, 200¢

= Some facts [on on Grid’5000, a grid of processors of heterogeneous speeds]
NQueens(21) in 78 s on about 1000 processors
- Nqueens (22) in 502.9s on 1458 processors

- Nqueens(23) in 4435s on 1422 processors [~24.10% solutions]

- 0.625% idle time per processor

- < 20s to deploy up to 1000 processes on 1000 machines [Taktuk, Huard]
- 15% of improvement of the sequential due to C++ (template)

Grid’5000 utilization L
during contest

Grids000 Crid Lond Tast day o o

(rsoy OV last hour

Ferient

PR] (e d] 2 B
W ousar ore [wige P00 B $pstem Ore O 147 <PU

CPU

Lesd P rots

+ 061 O
D?y:.:.:__w:a._xl,..sﬁIes::.u:.ﬁ&m:

6 instances Nqueens(22)

N 8 &
vm vm B a Network
C Qo =2 < m Orsoy Natvork Tast hour
= e = 9 > e
= = o O y : :
& & g8 =2 §
t £ f2 ¢
o v Y O =z

Experimental results on SOFA [CIMIT-ETZH-INRI.
[Allard 06]

Linear

Bx8x9x4 T

Bx6x26

#an
B

.,

Axax1é A
v ¥ W
]

Bx8x36 -
10x10x46 | - §

W e b 48 0

3 .m\

pdb 38

eliminary results on GPU NVIDIA 8800 GTX
peed-up ~9 on Bar 10x10x46 to Athlon64 2.4GHz
*128 “cores” in 16 groups
*CUDA SDK : “BSP-like, 16 X [16 .. 512] threads

*Supports most operations available on CPU
*~2000 lines CPU-side + 1000 GPU-side

Speedup

SN SR I D L SN Sy T
¢ 1 2 3 4 5 6 7 & % 10 11 12 13 14 15 16

Kaapi (C++, ~500 lines)

Bar-fem-implicit-32

@ Linear

|m Bx8xGx4
v Ax4x16

m e
& Bxox26

5-r® Bx8x36

=
\i’

N

=
L.
3

Cilk

Y T | Sy e
6 7 & 9 10 11 12 13 14

(C, ~240 lines)

Speedup GPU Bar-spring-euler

] 22ty
o JEaxixl6
CI6v6:26
8 4Cax8x36
, Ima0aouss
6
5
4
4]
2
H —
=1

4
Objects

8

15

1

)
V

Work-first principle and adaptability

Work-first principle: -implicit- dynamic choice between two executions :
* asequential “depth-first” execution of the parallel algorithm (local, default) ;
° a parallel “breadth-first” one.

Choice 1s performed at runtime, depending on resource idleness:
rare event if Depth 1s small to Work
WS adapts parallelism to processors with practical provable performance

. Processors with changing speeds / load (data, user processes, system, users,
° Addition of resources (fault-tolerance [Cilk/Porch, Kaapi, ...])

The choice is justified only when the sequential execution of the parallel
algorithm is an efficient sequential algorithm:

* Parallel Divide&Conquer computations

-> But, this may not be general in practice

ow to get both optimal work W, and W._ small?

* General approach: to mix both
- a sequential algorithm with optimal work W,

e and a fine grain parallel algorithm with minimal critical time W_

' Folk technique : parallel, than sequential

* Parallel algorithm until a certain « grain »; then use the sequential one
« Drawback : W_increases ;0) ...and, also, the number of steals

» Work-preserving speed-up technique sini-ransa) S€quential, then parallel Cascading wajasz :
Careful interplay of both algorithms to build one with both

W_small and W, =0(W,,)

* Use the work-optimal sequential algorithm to reduce the size

* Then use the time-optimal parallel algorithm to decrease the time
* Drawback : sequential at coarse grain and parallel at fine grain ;0(

-xtended work-stealing: concurrently sequential and paralle

Based on the work-stealing and the Work-first principle :

Instead of optimizing the sequential execution of the best parallel algorithm,
let optimize the parallel execution of the best sequential algorithm

Execute always a sequential algorithm to reduce parallelism overhead

Hvom_‘m__m_m_@o_%:qimcmma os_ﬂ :m_oﬂo.ommmo:omoo:dmmE_mcm%o%ﬂm.m::g_moo:mm_moom_..
to extract parallelism from the remaining work a sequential computation

Assumption : two concurrent algorithms that are complementary:

° - one sequential : SeqCompute (always performed, the priority)
- the other parallel, fine grain : LastPartComputation (often not performed)

SeqCompute

—xtended work-stealing : concurrently sequential and parall

Based on the work-stealing and the Work-first principle :

Instead of optimizing the sequential execution of the best parallel algorithm,
let optimize the parallel execution of the best sequential algorithm

Execute always a sequential algorithm to reduce parallelism overhead

Uvmﬁm__m_m_ooﬁ::ﬁ:_mcmmq o:_w :on.ommmoﬁcmooBmmE_mem%o%ﬂmm::@oﬁmoo:mm_moom_..
to extract parallelism from the remaining work a sequential computation

Assumption : two concurrent algorithms that are complementary:

° - one sequential : SeqCompute (always performed, the priority)
- the other parallel, fine grain : LastPariComputation (often not performed)

. merge/jump |
SeqCompute_main " Seq :

——preempt ===~~~

— S ENS IR I RS e

|
SeqCompute [~ complete

) operations to ensure non-idleness of the victim

* Once SeqCompute main completes, it becomes a work-stealer

Extended work-stealing and granulatity

Scheme of the sequential process : nanoloop
While (not completed(Wrem)) and (next_operation hasn’t been stolen)

{
atomic { extract_next k operations ; Wrem —-= k ; 1}
process the k operations extracted ;

}
Processor-oblivious algorithm
" Whatever pis, it performs O(p.D) preemption operations (« continuation faults »)
-> D should be as small as possible to maximize both speed-up and locality

= |f no steal occurs during a (sequential) computation, then its arithmetic work is optim

to the one W, of the sequential algorithm (no spawn/fork/copy)

-> W should be as close as possible to W,

Choosing k = Depth(W,,,,) does not increase the depth of the parallel algorithn

while ensuring O(W / D) atomic operations :
since D > log, W thenifp=1. W~ W,,

Implementation : atomicity in nano-loop based on efficient local lock

Self-adaptive granularity

tive application with time constraint

Anytime Algorithm:
* Can be stopped at any time (with a result)
* Result quality improves as more time is allocated

In Computer graphics, anytime algorithms are common:

LLevel of Detail algorithms (time budget, triangle budget, etc...)
Example: Progressive texture loading, triangle decimation (Google Earth)

Anytime processor-oblivious algorithm:
On p processors with average speed 77, it outputs in a fixed time T

a result with the same quality than
a2 sequential processor with speed 17, in time p./1,

ve’

ve*

Example: Parallel Octree computation for 3D Modeling

arallel 3D Modeling

3D Modeling :

build a 3D model of a scene from a set of calibrated images

On-line 3D modeling for interactions: 3D modeling from
multiple video streams (30 fps)

TT 1T

e r
SEERNas

Level 0

Depth first
+ iterative deepening

A classical recursive anyti

e

State of a cube;:

- Grey: mixed => split
- Black: full : stop
- White: empty : stop

[L. Soares 06]
me 3D modeling algorithm.

Level 2

@@mwu@mw 78

Width first

At termination: quick test to decide all grey cubes time control

first parallel octree carving

ell suited to work-stealing

-Small critical path, while huge amount of work (eg. D =8, W = 164 000)
- non-predictable work, non predictable grain :

ir cache locality, each level is processed by a self-adaptive grain :
“sequential iterative” / "parallel recursive split-half”

stree needs to be “balanced” when stopping:
* Serially computes each level (with small overlap)
* Time deadline ao Bmv Bm:m@ma by signal _0388_

Unbalanced Balanced

ieorem: W.r.t the adaptive in time T on p procs., the sequential algorithm:
- goes at most one level deeper : |d,-d | <1;

- computes at most : ng<n, + O(logn,) .

Results

[L. Soares 06]

Time i
EH G
f. o e
o
M o _—
il £ +—— — 0
FRERen ' I S T ST E I G ¢ E
X + Speet Efticiance T
T E
- R — — = - T
X
|.1u£-| = vae
n...d..r._.r. a _mﬂ.-mw.w-_
e —a—pa B
T 0101112 13 1 0F 1
CPUs

8 cameras, levels 2 to 10

- 16 core Opteron machine, 64 images
- Sequential: 269 ms, 16 Cores: 24 ms

- 8 cores: about 100 steals (167 000 grey cells)

Preliminary result: CPUs+GPU

1000

= Speadlp
Time e
TR
X0 2 =
1w e
o
m It
o ldeal I L
» Bpead Efficisnca
13
R
s
!ru?lvffu.l s
A £
L oY 5
4.” _w 7 H_ﬂ 4 ___u _._ _.r __u __.A ‘_u _w
CPUs g

64 cameras, levels 2 to 7

-1 GPU + 16 CPUs
- GPU programmed in OpenGL
- efficient coupling till 8 but

e Time GPU
¢ Time CPU
v |deal

does not scale

log (Time (ms))

mortizing the arithmetic overhead
Cm .m_.___.=m__m=..

Adaptive scheme : extract_seq/nanoloop // extract par
» ensures an optimal number of operation on 1 processor
* but no guarantee on the work performed on p processors

Eg (C++ STL): find_if (first, last, predicate)
locates the first element in [First, Last) verifying the predicate

This may be a drawback :
* unneeded processor usage ;

* undesirable for a library code that may be used in a complex application,
with many components
* (or not fair with other users)
» increases the time of the application :
*any parallelism that increases the execution time should be avoided

Motivates the building of work-optimal parallel adaptive algorithm
(processor oblivious)

Similar to nano-loop for the sequential process :
» that balances the -atomic- local work by the depth of the remaindering one

Here, by amortizing the work induced by the extract_par operation,
ansuring this work to be small enough :

» Either w.r.t the -useful- work already performed

» Or with respect to the - useful - work yet to performed (if known)
* or both.

Eg : find_if (first, last, predicate) :
» only the work already performed is known (on-line)
» then prevent to assign more than a(W,,..) operations to work-stealers
» Choices for o n) :
*n/2 : similar to Floyd’s iteration (approximation ratio = 2)
* n/log* n : to ensure optimal usage of the work-stealers

= .ﬂ |S. Guelton]

n find _i

N doubles : time predicate ~ 0.31 ms

blee Tind_if on a doublo Tidooenl tack tine 3 31,70770-5 mec) bloc Find_if on a double [10000] § task time 2 31.7077e=5 sec ¥
3 . 16 v . -
until last slonant unkil last th elenent —-
until 18000tk elensat until I00BHEL element g
until 1o0Oth eleapnt —— E—r—m 1000th olon m\\-nl-h
ag | until 100th wleasst ——] 14 until tooch al rr—
\
\
26 b
\
- _._
< om \
3 \
g
u
S 4
16 [
2 ff.rlllvl ,,,,,
e e i]
L] 34 14
2 4 B b 1w 2 14 16
oh thread
With tizati 1
Find_if on a double (16000001 { teck tine § 30,7877 nicro sec) Find_if on a double (18000601 ¢ tack tine : 39,7077 nicro sec)
16 ' r 16 - : -
until 16th element —— =k until 10th elencn
until 1poth elenent o until 108th elenen
until 18B0th elencat-~ until 1000th olencn
14 - until 10600th elenefit Rkl | 14 until 10000th elepen
until Lo0000th elshent until 100000th etenen
until GORB0ALL-Elencnt until S00G0OLH"elenon
until lagt clemont wntil Fast elenent ——
=2 12 b - 1
12 s ~ —
7 e - =l

Pl - n el 2
10 b v e 4 ’ —

relative speedup
N
§
%
speedup
Ay

e —— =
[e E— i, =
' & e
\\ o Pt
" - =
2t \\\ ol -
e ——.
: ey T el e
2 \\\.. 1
) = - o et
il z’ Sy 2 4 6 a 10 12 14 16
2 1 [B 14 1 nb thread
nb thread

With amortization macroloop

Parallel algorithm based on :
- compute-seq / extract-par scheme
- nano-loop for compute-seq

- macro-loop for extract-par

vious Prefix on 3 proc.

Sequential

Parallel

Vork-
aaler 1

VOrk- — —
saler 2

time
32

-Oblivious Prefix on 3 proc.

Sequential

ain
2q.
Parallel
ai=a5*..." ai
a; a a, a8, ;08 a

2aler 1

Work-

tealer 2)

time

33

P-Oblivious Prefix on 3 proc.

Sequential

ain > |
2q. 1
Preempt \ Ty oL
\ 8
Parallel
. 8. A, a. Q_Hmm*...*m_
Vork-
2aler 1
Bi=a9*...*ai
P
Work-
tealer 2 P
C 1z 4

34

-Oblivious Prefix on 3 proc.

Sequential

Ns@y 8 8y 8y 7— T o 7

ain
2q.
Preempt | 7rg B,
Parallel
a. a, a, a, oi=ab*..."ai
Vork- -——
2aler 1
ai
Work-
tealer 2

-Oblivious Prefix on 3 proc.

Sequential

ain
2.
Parallel
ai=ab*...*ai
Vork-
zaler 1
*Uc
Bi=a9*...*ai
P,
Work-
tealer 2 .

-Oblivious Prefix on 3 proc.

Sequential

ain
3q.
S
Implicit critical path on the sequential process To=7 T, =6
Parallel
a.a. a oi=ab*...*ai
Vork-
2aler 1
Bi=a9*...*ai
Work-
tealer 2

nalysis of the algorithm

J_ O _0@3

Execution time < | |
ave

Lower bound
Sketch of the proof :
Dynamic coupling of two algorithms that complete simultaneously:

= Sequential: (optimal) number of operations S on one processor

= Extract_par : work stealer perform X operations on other processors

- dynamic splitting always possible till finest grain BUT local sequential
* Critical path small (eg :log X witha W=n/log* n macroloop)
¢ Each non constant time task can potentially be splitted (variable speeds)

|m I ;vA‘ log X
ls = MManis and \.NJB — (p—1).Mgve -0 A _Jw\emv

ave

= Algorithmic scheme ensures T, = T + O(log X)

=> enables to bound the whole number X of operations performed
and the overhead of parallelism = (s+X) - #ops_optimal

LES =_ (S H\ N [D Traore]

Prefix sum of 8.10° double on a SMP 8 procs (1A64 1.5GHz/ linux)

5 T T

. _ seqs mmn:__m_..ﬂwww tine (5) e
static grain: average tine (g) we——

Wm—.—m—@ user OON—HONH adapt grain: average Line {g) s

 Pure sequential

Tinels]

Time (s)

o Optimal off-line on p procs

J
Oblivious
" _ _ _ _ _ ,
1 2 3 4q 5 B 7 8
#processors e

Single-usercontext : processor-oblivious prefix achieves near-optimal performance :
- close to the lower bound both on 1 proc and on p processors

- Less sensitive to system overhead : even better than the theoretically “optimal” off-line parallel algorithm on p proc:

[D Traore]

ults 2/2

Prefix sum of 8.10¢ double on a SMP 8 procs (1A64 1.5GHz/ linux)

1 . ' ' mn_mvn. grain: average tine (5) e
ZF——H#I:@@‘.‘ no-ﬂ—.‘mxﬂ . adapt, grain: maxinal time (g} ———
adapt, grain: ninimal tine (s} ——
7 F static grain: average tine (g5) =

static grain: naxinal tine {(s) -
static grain: nininal tine (5) ——

External charge
(9-p external processes)

Time (s)

' Obliv :

ious

1 2 3 4 L 6 7 8

#processors

Multi-user context :
Additional external charge: (9-p) additional external dummy processes are concurrently executed

Processor-oblivious prefix computation is always the fastest
15% benefit over a parallel algorithm for p processors with off-line schedule,

1sion

Fine grain parallelism enables efficient execution on a small number of
processors

= |nterest : portability ; mutualization of code ;
= Drawback : needs work-first principle => algorithm design

Efficiency of classical work stealing relies on Work-first principle :

= Implicitly defenerates a parallel algorithm into a sequential efficient ones ;

= Assumes that parallel and sequential algorithms perform about the same amount of
operations

Processor Oblivious algorithms based on Work-first principle

* Based on anytime extraction of parallelism from any sequential algorithm (may
execute different amount of operations) ;

= Oblivious: near-optimal whatever the execution context is.

Generic scheme for stream computations :

parallelism introduce a copy overhead from local buffers to the output
gzip / compression, MPEG-4 / H264

Kaapi (kaapi.gforce.inria.fr)

7277 o * Work stealing / work-first principle

. ¢ Dynamics Macro-dataflow :

s e D) partitioning (Metis, ...)

QuickTime® et un
dZcompr odec YUV420
SONL FEqUIS pour Visionner cetle image,

[E Boyer, B Raffin 2006]

«_ ' * Fault Tolerance (add/del resources)

FlowVR (flowvr.sf.net)
* Dedicated to interactive applicatioi
* Static Macro-dataflow
* Parallel Code coupling

Thank you |

Back slides

43

ial/parallel fixed/ adaptive

m Sequentiel || Statique Adaptatif

| p=2 | p=4 | p=6 | p=7 | p=B p=8

. Minimum 21.83 18,16 | 15,89 | 14,99 | 13,92 | 12,51 876 |
Maximum 23,34 2073 | 17.66 | 16,51 | 1573 | 14,43 12,70

~ Moyenne 22 57 19,50 | 17,10 | 15,58 | 14,84 | 13,17 11,14
Mediane 22 58 1964 | 17,38 | 16,57 | 14,63 | 13,11 11,01

On each of the 10 executions, adaptive completes first

Ive prefix : some experiments

Prefix of 10000 elements on a SMP 8 procs (IA64 / linux)

20 T T T
_ adapt, grain average tine (g) e

adapt, graini nawinal tine {(g) -
adapt, grain: nininal tine (s)
static grain: average btine (s) s
static graini naxinal tine (g} e
static grain; nininal tine (g}

18

10 b,

N ¢ Parallel

\\\4

Adaptive

o I 1 I i I
1 2 3 4 L]]

#processors

Single user context

Adaptive is equivalent to:
sequential on | proc
optimal parallel-2 proc. on 2 processors

optimal parallel-8 proc. on 8 processors

20

adapt. grain: average tine (5) =———
adapt, grain: naxinal tine (s} ——
adapt, grain: nininal time (s} ——
static grain: average tine (5) ==
static grain: maxinal time (s}

static grain: nininal timne (g} —

15

External charge

10 f

Time (s)

Adaptive o

2 3 4 5 [7 8

#processors

Multi-user context
Adaptive is the fastest

15% benefit over a static grain algorithm

[ith * = double sum (i=rii-11 + xi1)

-inest “grain” limited to 1 vmom 16384 octets = 2048 double

m;w_u_. grain: wcmﬂwmm __..v:m auv
adapt, mﬁmbz naxinal tine (5}
adapt. w_,mu: nininal tine (s}

mu_mvﬂ grain: mcn?..wn tine (g) s
adapt. grain: maxinal tine (s) ——

adapt, prain: nininal timne {(s) ——
static graini average tine (g) w=—— static grain: average tine (s) we=——
static grain: maxinal time {g) static grain: naxinal tine {s) ——
static grain: nininal tine {8} ——

static grain: ninimal tine {5}

Tinels]

L L 1 L
1 2 3 4 5 6 7 8 8
Hunbre de processeurs

Hunbre de processeurs

Single user Processors with variable speeds

Remark for n=4.096.000 doubles
- “pure” sequential : 0,20 s
- minimal "grain” = 100 doubles : 0.26s on 1 proc
and 0.175 on 2 procs (close to lower bound)

dnoJc) sieo

latforms

als

Icluster 2 :

- 110 dual ltanium bi-processors with Myrinet network
Grlmage (“Grappe” and Image):
Camera Network
54 processors (dual processor cluster)
Dual gigabits network
16 projectors display wall
Grids:

- Regional: Ciment

- National: Grid5000

* Dedicated to CS experiments

SMPs:

- 8-way ltanium (Bull novascale)

- 8-way dual-core Opteron + 2 GPUs
MPSoCs

- Collaborations with ST Microelectronics on STH

= Two main performance criteria:

- Frequency (refresh rate)
* Visualization: 30-60 Hz
° Haptic : 1000 Hz
- Latency (makespan for one iteration)
* Object handling: 75 ms
= A classical programming approach: data-flow model
- Application = static graph
Edges: FIFO connections for data transfert
Vertices: tasks consuming and producing data
Source vertices: sample input signal (cameras)
Sink vertices: output signal (projector)
= One challenge:
Good mapping and scheduling of tasks on process

Visualization

ors . ¥

