No_te Taker Checklist Form -MSRI

Name: U)] AT

) T T
Il y
|;' —) |) =
E-mail Address/ Phone#: | 7S [/{ € FPNEU. el
J !
Talk Title and Work}ghop assigned to: _ . < PR {
AT et p t G, : A Lom P T _II::-'=‘;;_; | A u.!’:;,-"l: (A 7 { -«f 9 AT L_
Lecturer (Full name): {2, 140, : s
Date & Time of Event: '{ 3¢ . Jon 30 2T
Check List:
@ Introduce yourself to the lecturer prior to lecture. Tell them that you will be
the note taker, and that you will need to make copies of their own notes, if
any.

(J/ Obtain all presentation materials from lecturer (i.e. Power Point files, etc).
‘This can be done either before the lecture is to begin or after the lecture;
/" please make arrangements with the lecturer as to when you can do this.

(/ /Take down all notes from media provided (blackboard, overhead, etc.)
(Y Gather all other lecture materials (i.e. Handouts, etc.)

(’f | Scan all materials on PDF scanner in 2 floor lab (assistance can be
provided by Computing Staff) — Scan this sheet first, then materials. In the
subject heading, enter the name of the speaker and date of their talk.

Please do NOT use pencil or colored pens other than black when taking notes as the
scanner has a difficult time scanning pencil and other colors.

Please fill in the following after the lecture is done:

1. List 6-12 lecture keywords: fcral“l, WieacMiVe)ca L/[: FAC i
Letpucly ek tmry Jroeayel . GILE, MPER AR FREL
2. Please summarize the lecture in S or less sentences. ' ,
E,u_;\" K ond Jea L:,-;_’/L;_f'(f{ AOE (S \ {21y —uUs :;-‘ e Cag e
A l ¢ cen R oL ".*g T ¢ T here . ¢ma (1 FSi% £ "
o QUL S he Bt : ey hivk J{C LA L it "{;"-i
i conment, Img | éf i l\‘ crb oy » . N N
N ot ol A s — _lb _':* .: JWY 4 / r

Once the materials on check list above are gathered, please scan ALL materials and send to the
Computing Department. Return this form to Larry Patague, Head of Computing (rm 214)

For Video Tapings-MSRI 9/2006

1030 Bui
Moving Sca/Lapack to Higher Precision (without too much work)
Yozo Hida

Lapack 3.1 has been released for about 2 months now.
—Improved MRRR algorithm for symmetric eigenproblems
-Faster Hessenberg QR
—Faster Hessenberg, tridiagonal, bidiagonal reductions.
-Mixed precision iterative refinement.

-Thread safety

Current Activities:
Faster Algorithms
~0(n”2) solver for polynomial roots via companion matrix
More Accurate Algorithms
-Higher precisions
Expanded ceontents (more Lapack in Scalapack)
Improve ease of use

What could go intoc Lapack?
for all linear algebra problems do
for all matrix types do
for all data types do
for all architectures and networks do
for all programming interfaces do
Procude fastest algorithm providing
acceptable accuracy;
Produce most accurate algorithm running at
acceptable speed;
od;
od;
od;
od;
od;

This talk will focus on what we can do as far as data types goes,
especially multiple precision.

Motivation
Lapack and Scalapack are widely used.
Significant minority want multiple precision
Want to support codes like:
n_bits <- 32
repeat
n_bits <- n_bits x 2
Solve with n_bits
until error < tol

Fixed Precision:
Compiler supported quad
Double-double, guad-double
Arbitrary Precision
GMP / MPFR
ARPREC

Double-double / Quad-double Package:

~-These represent a higher precision numers as an unevaluated sum
of 2 or 4 double precision numbers

~Ex: 2760 + 1 is represented as (2760, 1)

—-Can represent about 32/64 digits of precision

—~Highly efficient algorithms due to fixed, small size.

—Simple representation. Easy for allocation or to use with MPI
-Somewhat fuzzy definition of "machine precision" for double-

double
—_Exponent range limited by that of double precision.
—-C/C++/Fortran 95 interafaces
—Support for ocmplex data types recently added
GMP/MPFR:

—One of most widely used multiple-precision floating point
computations with correct rounding.

~Speed

_Uses a somewhat complicated data structure, mixing various types
in a C structure.

ARPREC:
—Uses simple floating point array to represent data.
-Message passing is made easier
-Slower than GMP

Considerations:

—Code will be easier to maintain if only a single source code is
used for varying precision.

—Need to let the user know how much workspace to allocate

-Allocation of temporary variables

-Multiple precisions in one instance: allowable?

-How to adjust precision.

-Co-existence of multiple versions?

Workspace allocation:

Specifying syze by bytes doesn't work well in Fortran. Specifying
size by bignum slots works okay if every bignum in the workspace has the
same size.

Allocate ourself? Would be nice for cache friendliness and ease
of message passing.

Temporary Variable Allocation: Memory for temp variables needs to be
allocated somewhere.

Could use external malloc routine or explicitly allocate. With
fixed precisions, have compiler automaticall allocate

Could be scolved through the use of macros.

Memory allocation: how much? when? Where?
Fixed Precision, the easiest approach.

Many compilers provide support for quad precision

OMF77 supports multi-precision variables (precision is compile-
time selected)

Maximium precision:

User specifies maximum precision at compile time. At run time,
program specifies precision to be used. Memory allocation issues are
handled automatically, but memory can be wasted needlessly.

Variable precision:

Memory allocation becomes tricky. Memory must be allocated

dynamically.

A simple replacement of variable types is not enough when working in
multiple precision. The compiler must see each piece of a variable as a
multiple precision number so that multiple precision. Also, when
dealing with constants not expressable as a double, extra care 1is
needead.

There are naming issues that need to be resolved as more packages are

added.

Implemented currently as a Perl script to convert Lapack sources to
perform what is needed.

terative Refinement:

Use Newton's iteration on r(x) = b-Ax but compute the residual in
double the working precision
You can get a more accurate answer up to a point. Error does not

grow with condition number up to a point.

Once the high-precision library is set up appropriately, most of the
existing Lapack code can be transformed with little trouble.

Future work:
More comprehensive error handling.
How much performance can we buy from using multi-core BLAS
Apply this to Scalapack.

Recent Results in Fast Stable matrix Computations:

-Coppersmith and Winegrad, 1990, fastest

-Strassen et al. showed O(n”"a) matrix multiplication implies O
(n~a) other things.

-Cohn, Kleinberg, Szegedy, Umans 2005 algorithm equals or beats
Coppersmith and Winograd, depending on finding the right groups. IT
uses Wedderburn's Theorem to reduce matrix multiplication to FFT.

New results (Demmel, Dumitriu, Holtz, Kleinberg 2006):

—-CKSU(2005) algorithm is stable

-Any O(n”a) algothm can be converted to a stable one (based
on Rax, 2003)

-There are stable algorithms for QR, LU, solve, and
determinant costing O(n”(a+e)) for e>=0

oving SCA/LAPACK to Higher Precision

Moving ScA /LLAPACK to Higher Precision

without too much work

Yozo Hida

yozoQcs.berkeley.edu

Computer Science Division
EECS Department
U.C. Berkeley

January 30, 2007

vy Hicla Meaving | aracie o Hicher Pracician withant toan moch Wark

oving SCA/LAPACK to Higher Precision
-Outline ‘

Jutline

Current State of LAPACK and SCALAPACK
Some high precision packages

Things to Consider when Using Higher Precision
Converting LAPACK to Higher Precisions

Other Methods of Increasing Accuracy

Conclusion

Future Work

) 5y

v Hirda Maovine T.apacrie o Hicher Precician withaot ton muach Wark

Jutline

Current State of LAPACK and SCALAPACK

3 B Bl e o ity
FeCision 24)
E Lo
g e
£ g p g R s
1 1 B w M i i M WW
£ E H Yo had B e
&
2 § % - 2 -
i 3 . i g
; ! e ; : ; N
i E i &
% . ¥ %
o : i . By H o wd g
& & - 5 y %
LONCIUS :
1 % &, n.m
7y Hirla

= =

Mavine T .apaciw o Hicher Proacician withood ton moeh \Waerk

£

oving SCA/LAPACK to Higher Precision e
-Current State of LAPACK and SCALAPACK

_urrent Status

» [LAPACK 3.1 has been released.

> Improved MRRR algorithm for symmetric eigenproblem.

2006 SIAM SIAG LA Prize winning algorithm of Dhillon, Parlett
» Faster Hessenberg QR (up to 10x).
2003 SIAM SIAG LA Prize winning algorithm of
Braman, Byers and Mathias.
Faster Hessenberg, tridiagonal, bidiagonal reductions.
Mixed precision iterative refinement.
Thread safety (save and data statements removed).
Many bug fixes.

vV v v ¥

» Feedback welcome: http://www.netlib.org/lapack-dev/

ey ﬁ wﬁw\m oy =

ey bHickn Moving T ararw 0 Hiocher Precicinn withaot fan moach Wark

&
L

oving SCA/LAPACK to Higher Precision

-Current State of LAPACK and SCALAPACK

“urrent Activities

> Faster algorithms.

» Recursive blocked layouts.
» Better QZ.

» O(n?) companion matrix solver (polynomial roots).
» More accurate algorithms.

» Extra-precise iterative refinement.
» Jacobi SVD.

» Higher precisions.

» Expanded contents: More LAPACK in SCALAPACK.
Automated performance tuning.

» Improve ease of use.

See www.cCS

Community involvement (this means you!)

berkeley.edu/~demmel for details.

.......

3
Mewvine T avacwk o Hicher Pracician withanit toan much \Wark

5y
ot

oving SCA/LAPACK to Higher Precision
-Current State of LAPACK and SCALAPACK

. M.r.»w

ome Participants — more are welcome!

ey Hirda

b

UC Berkeley

Jim Demmel, Ming Gu, W. Kahan, Beresford Parlett, Xiaoye Li, Osni Marques,
Christof Vomel, David Bindel, Yozo Hida, Jason Riedy, Jianlin Xia, Jiang Zhu

U. Tennessee, Knoxville
Jack Dongarra, Victor Eijkhout, Julien Langou, Julie Langou, Piotr Luszczek,

Stan Tomov

Other Academic Institutions

UT Austin, UC Davis, Florida IT, U Kansas, U Maryland, North Carolina SU,
San Jose SU, UC Santa Barbara TU Berlin, FU Hagen, U Madrid, U
Manchester, U Umea, U Wuppertal, U Zagreb

Research Institutions
CERFACS, LBNL

Industrial Partners
Cray, HP, Intel, MathWorks, NAG, SGI

! i £ i

Movineg T apacie +n Hicher Procicinn withnnt fon miuch Wark

oving SCA/LAPACK to Higher Precision
-Current State of LAPACK and SCALAPACK

%%%

Vhat could go in LAPACK?

for all linear algebra problems do
for all matrix types do
for all data types do
for all architectures and networks do
for all programming interfaces do
Produce fastest algorithm providing acceptable
accuracy.
Produce most accurate algorithm running at
acceptable speed.

| i s

7 Hirla Maovineg T.apacie +a Hicher Precician withoaut ton moach Wark

vey Blicin

oving SCA/LAPACK to Higher Precision

-Current State of LAPACK and mok_wr}@wom

Vhat could go in LAPACK?

for all linear algebra problems do
for all matrix types do

for all data types do
for all architectures and networks do

for all programming interfaces do
accuracy.

Produce fastest algorithm providing acceptable
acceptable speed.

Produce most accurate algorithm running at

Some prioritization and automation is obviously needed.

Rest of the talk will concentrate on data types, specifically
precisions higher than double precision.

Mewvine T arark ta Higher Procicinn withant ton much \Warlk

o

oving SCA/LAPACK to Higher _menmm_om

~-Current State of b»@yox m:Q mo>h>§bm

Notivation for higher precision

» LAPACK and SCALAPACK are widely used.

User survey revealed small but significant portion of users
wanted precision higher than double precision.
http://icl.cs.utk.edu/lapack-forum/survey/

» We want to do least amount of work to support multiple
precision.

» We want to support codes like

n_bits < 32
repeat
n_bits < n_bits x 2
Solve with n_bits
until error < tol

7y Hida Meavine T.aparu o Hisher Precician withant tan maech \Warl

vev Hirda

S

Some high precision packages

Things to Consider when Using Higher

3

g

«.92. £ B g e P 3 Nw ,.wx m«
FUTLre YVorK

§ E Y ey
(K to Higher Precis

1
hy

Mavineg Toavacie +o Hioher Proecician withant foaa muoch Wark

-Some high precision packages

ome Implementations of Higher Precision

Fixed precision
» Compiler supported quad
» Double-double, Quad-double

» Arbitrary precision

» GMP / MPFR
» ARPREC

e

3

ey Hida Meavineg T apact +a Hicher Preacicinn withont tan miech Wark

oving SCA/LAPACK to Higher Precision

-Some high precision packages

e s

Jouble-double / Quad-double Package

v Hirda

http://crd.1bl.gov/~dhbailey/mpdist/.

These represents a higher precision numbers as an
unevaluated sum of 2 or 4 double precision numbers.

Example: 290 + 1 is represented as the pair (2°0, 1).
Can represent about 32 / 64 digits of precision,
Highly efficient algorithms due to their fixed, small size.

Simple representation: fixed size array of doubles.
Makes it easy to allocate arrays and use MPI.

Somewhat fuzzy definition of “machine precision” for these

numbers:
1 + 271000 can be represented exactly in double-double, but not
1+ Nlmoo Ji, leooo.

0 5 = = = ¥y

Maving T.apacw ta Hicgher Precicion withait tan mioech Wark 1

oving SCA/LAPACK to Higher Precision

-Some high precision packages

Jouble-double / Quad-double Package

» C, C++ and Fortran 95 interfaces.

subroutine f_main

use gqdmodule

type (qd._real) a, Db

a=1.d0

b = cos(a)**2 + sin(a)**2 - 1.d0
call qdwrite(6, b)

end subroutine

» Support for complex data types recently added.

Pl

s Hirla Meaving T apacis ta Hicher Procicion withoant tan mich \WWerk

oving SCA/LAPACK to Higher Precision

-Some high precision packages

;MP /MPFR

» Multiple-precision floating-point computations with correct
rounding.

http://www.mpfr.org/
» Uses integer arithmetic instructions.
» Highly optimized for variety of platforms.

» Somewhat complicated data structure, mixing various types in
a C struct.
This makes inter-language operation, porting, and message
passing somewhat harder.

» C, C++ interfaces. No Fortran 95 interface.

7 Hirla Moving T apacriy tn Hicher Pracicion withont tao miech \Werle

&

oving SCA/LAPACK to Higher Precision

-Some high U_‘mnmwﬂo: packages

\RPREC

yey Hidda

» http://crd.1lbl.gov/~dhbailey/mpdist/.

Uses simple floating point array to represent data.

This makes inter-language operation and message passing
easler.

» Slower than GMP. (sometimes by factor of 10).

C, C4++, and Fortran 95 interfaces.

subroutine f_main

use mpmodule

type (mp_real) a, b

call mpinit (500)

a=1.d0

b = cos(a)**2 + sin(a)**2 - 1.d0
call mpwrite(6, b)

end subroutine

- o =

Mavineg 1 apacw +ta Hicher Precician withant tan miuoech Wark

oving mok\?ﬁ%oﬁ to I_mrm_\._ﬁwmﬂm“o:

.

- Things to Consider érm: Using Immym_. P‘mn_m_o:

Jutline

Things to Consider when Using Higher Precision

ey Hida Meovino 1 anac tn Hiogher Pracicinn without tan miuech \Werk

oving SCA/LAPACK to Higher Precision

- Things to Consider when Using Higher Precision

"hings to Consider

7o Hira

Single source code for varying precision. This makes it much
easier to maintain code.

Workspace allocation. We need to tell the user how much
workspace to allocate.

Temporary variable allocation.

Should we allow multiple precisions in one routine? Within
one matrix?

How to adjust precision.

Can multiple versions co-exist? Naming issues.

L [= = E

Mavine T apacw ta Hicher Precicion withoant tan mich Werk

oving SCA/LAPACK to Higher Precision B e e G e

-Things to no:m_am_‘ when Using Higher _u«mn“m_o:

Vorkspace Allocation

Many LAPACK routines requires workspaces.
How should we specify the size?

» by number of bytes? Doesn't work well in Fortran.

» by number of bignum slots? Works OK if every bignum in the
workspace has the same size.

We also like the workspace to have some contiguity for cache
friendliness and ease of message passing.

Il
I

| i o = .;W

7y Hirla Mavineg T.apacww +a Hicher Precicion withoant tean muoaech Waork

oving SCA/LAPACK to Higher Precision

o

- Things to Consider when Using I___mw:_ww”_m_.mmm_mou;

‘emporary Variable Allocation

Memory for temporary variables need to be allocated somewhere:
r=a+b+c

The temporary result (a + b) must be stored somewhere.

Have the compiler automatically allocate (for fixed precisions),

Use external malloc routine,

» Explicitly allocate.

ey Hicis Maving T apacw tn Hicher Pracician withont tan minch Waerk

5

oving SCA/LAPACK to Higher Precision

- Things to Consider when Using Higher Precision

1xed vs. Variable Precision

» Memory allocation: how much? when? where?

» Variable precision allows us to support codes like

n_bits «— 32
repeat
n_bits < n_bits x 2
Solve with n_bits
until error < tol

7y Hirda Mavine T apact ta Hiocher Precicinn withant tan miich \Warlk

oving SCA/LAPACK to Higher P,mn_m_OJ
- Things to Consider when Using Imm:mq Pmmm,o:

‘Ixed Precision

This is the easiest approach.
» Many compilers (not all) provide support for quad precision.

> One compiler (OMF77) even supports multi-precision
variables (precision is compile-time selected).

Fortran 90 modules and interfaces can be used to provide
operator overloading to custom types (double-double,
quad-double).

» Memory allocation issues can be handled automatically.

iy Mirka Maoving T apacie +a Hicher Pracicinn withont tan muoch Winrk

oving SCA/LAPACK to Higher Precision

- Things to Consider é:mm Cwm__._m Iﬁ:@._u_,m \

Naximum Precision

User specifies maximum precision at compile time.

» At run time, the program specifies the precision to be used
(less than the maximum specified at compile time).

» Memory allocation issues can be handled automatically.
» \Wastes memory if precision used is much smaller than the

maximum precision.

Fortran 95 interface of ARPREC currently works in this mode.

- = = Z

yr Hirda Maevine T.apacy ta Hicher Precician withant tan miich \Winrk

oving SCA/LAPACK to Higher Precision
-Things to Consider when Using Higher Precision

/ariable Precision

User can specify precision to use at run-time.

» Memory allocation issues can get tricky:

» Memory must be allocated dynamically.
» For cache (and communication) efficiency, we want to allocate

a single block for each matrix.
» Do we allow differing precisions within one algorithm? within

one matrix?
» Only allocates necessary memory.
C++ interface of ARPREC currently work in this mode. Work is
currently being done to make Fortran 95 interface works in this

mode as well.

] 5 2= B =

ey Hicla Meving T Aapaci ta Hicher Pracicion withaot tan mioch Wark

t:i.i!H e

AAUN YL UL LHUY AN UUIDTIISA | AT W M VA V| OUInup|

i

s O

d 19YS8IH 01 MOVdV SullISAUOY)

SUOISIDvJ

i ox
L

1€

i

oving SCA/LAPACK to Higher Precision

e e.,..\,”\.».\...wmw& . ,\mem.

- Converting LAPACK to Higher Precisions

Nodules

The high precision library provides a module that declares what
operators and functions are overloaded:

module mpmodule
type mp_real
sequence
real*8 mpr (mpwds+5)
end type

interface operator (+)
module procedure mpadd
end interface

end module mpmodule

o S B = o N

sy Hicia Mavine T.apacie +a Hicher Procician withont too muoch Wark g

oving SCA/LAPACK to Higher Precision
- Converting LAPACK to Higher Precisions

/lodules

LAPACK source is then modified slightly:

subroutine some_lapack_routine
| Use module for arbitrary precision
use mpmodule

I Declare variables in the desired format
type (mp_real) a, b, c

! LAMCH must be provided by the
| arbitrary precision package provider
smlnum = lamch(a, ’Safe minimum’)

| ...the rest of the code
end subroutine

iy Hirla Mavine T apaci tn Hicher Procicion withoont tan mich Wark

oving SCA/LAPACK to Higher Precision e L B _ E
-Converting LAPACK to Higher Precisions .

\ssessment of Constants

Simple replacement of variable type is not enough:
x = 0.1d0 / 0.3d0

This line is interpreted by the compiler as double precision

constants and computation. Needs to be replaced with something
like,

x = mp_real(0.1d0) / mp_real(0.3d0)
or if dealing with constants not representable in double precision:

x = mp_real("0.1") / mp.real("0.3")
This is the most common “bugs” reported to us when people
convert their code to use our higher precision packages.

yv Hirda Maving | apacriy ta Hicher Precicion withant tan moch \Warl

oving SCA/LAPACK to Higher Precision

- Converting LAPACK to Higher Precisions

laming Issues

How should a routine be named when using a new precision?

» Add a new prefix. DGESVX becomes QGESVX for quad,
QD_GESVX for quad-double etc.
Leads to name explosion, but easier for inter-language
operations.

» Use generic names like "GESVX" and dispatch to correct
routines using Fortran 95 module and interface facilities.
LAPACK 95 does this.

o o

vy Hidda Meving T apac +a Hiocher Precicion withmnt tao muach \Warl

oving SCA/LAPACK to Higher Precision

-Converting LAPACK to Higher Precisions

1mitations with Fortran 95

» Fortran 95 does not allow |/O routines to be overridden.
LAPACK uses |/O only in the test code, so often we can just
print out the double-precision approximation instead.

» Fortran 95 does not have a general destructor, making it hard
to micromanage memory allocation / destruction. (Fortran
2003 fixes this).

» Annoying Fortran 77 formatting (e.g., line length).

vy Hicla Mowving T apacw ta Hicher Precicion withant tan mich \WWarle o

oving SCA/LAPACK to Higher Precision

- Converting LAPACK to Higher _men.m_m_mo:.

mplementation

Currently implemented as a Perl script to convert LAPACK sources
to perform

» use appropriate module file (provided by the dd / qd / arprec
packages),

» constant literal substitutions,

» handle Fortran data declarations,

use a new prefix for each LAPACK routines,

» substitute something appropriate for read / write statements,
and

» declare variables in appropriate types.

Passes many LAPACK tests for Quad and QD precisions, including
linear systems.

Work being done on ARPREC implementations.

v Hirla Maving T apacie ta Hicher Procician withaont tan mieh \Warlk M

£al xmlu

L

ACK and SCAI

o W

Mavine T anacw ta Hicher Precician withont tan miuch Wark

oving mebmwvmwoﬁ to Higher Precision

= Other ?_mﬁTOn_m O.H.. _Znﬂwwmmzm ~Pnn£_.m-‘0u\

terative Refinement

Use Newton's iteration on r(x) = b — Ax but compute the residual
iIn double the working precision:

AN

£« A71b (using basic solution method)

repeat
r «— A% — b (compute residual in doubled precision)

dx «+ A~1r (solve for correction)

x « & — dx (update solution)
until convergence or no progress

7oy Hirda Maving T apac ta Hicgher Pracicion without tan miuch Winrk

oving SCA/LAPACK to I_mrmw Precisio
-Other Methods of _:n_\mmm_:m }

terative Refinement

no‘s\m_\n_ error vs. condition number

0 5 10 15 0 5 10 15

—Omuo Knorm Momuo Rnorm

We can obtain small errors until condition number gets too bad; at
which point we just need more precision.

- (5 g = £)

roy Hirda Mavine T.abacw +a Hicgher Precician withant +an moch Winark ES

oving SCA/LAPACK to Higher Precision

-Other Methods of Increasing Accuracy

\ccurate Summation

T heorem

Suppose we have n f-digit, base-b floating point numbers, and we

sum them in decreasing order of their exponent using a F'-digit
: £
mnn:EEmmo\..;mz\x:MHlT K ngm:;mgﬁbcﬁmqgs

5 has a relative error bounded by

31
—f
i:T&i b

s — 8§
e |

N =

8

For b/ moderately large, relative error is bounded by just over
W@ + C@i@. Ifn > N + 2, then relative error can be arbitrary.

rey Hirda Meaovine T apacww ta Hicher Pracicion withant tan miuch Winrk

oving SCA/LAPACK to Higher Precision

-Other Methods of _.:n_,m_mmm:m Accuracy

\ccurate Summation

If we use x86 80-bit floating point format as accumulator, we can
add 21 + 1 = 2049 doubles accurately.

Previous theorem is especially useful when dealing with
multi-precision variables, since

» sorting by exponent is often much faster, and

» we can often pick the size of the accumulator (F') to achieve a
desired accuracy, based on the number of terms to be added.

ARPREC uses b = 2% as the base, so we just need to keep an
extra word to compute the sum accurately.

7en Hirla Meavinog T anaci ta Hicher Pracician withant tao moch \Wark

epIH V4

)‘IJU.;'V\ unw WL IRV WD LG e A O] W MV Y P ouinuny

|2u07)

uoisn

s
Lt
-

-

L

-~ -
]
g

sageyxoed uoist

goowo-gx:

IV O 9

-
L

WY

i

A

L pue

oving SCA/LAPACK to Higher Pre i

-mo“u_n____mmmo: - R

onclusion
Once the high-precision library provides the appropriate module file
declaring the overridden functions, most of LAPACK code can be
transformed to use them without too much effort.

vy Hirla Maovine | apace +n Hicher Precicinn withant oo miech \WWinrk A

ey Hirdn

Future Work

igher Precision
recisions

%

o q.nmw g
Mavine T apacie ta Hicher Pracicion withant tan much Wark

oving SCA/LAPACK to Higher Precision
- Future Work . -

uture Work

» Exception handling.

» How much performance can we buy from using multi-core
BLAS?

» Apply same technique to SCALAPACK.
» Provide F95 interface to MPFR. Anyone?

| il = e Ea

ver Bickn Meavine T apacw ta Hicher Precicion withont tan mich Waerk

oving SCA/LAPACK to I_mrm_. Precision

o /m.%w\
-Recent Results in Fast, mﬁmv_m _<_mﬁ:x no:._ncﬂmn__o:m _

ecent Results in Fast, Stable Matrix Computations

Current record for fast matrix multiplication: O(n*3%).

(Coppersmith & Winograd, 1990).

» Strassen et al. showed O(n®) matmul implies O(n®) matrix
inversion, determinant etc.

» New algorithm by Cohn, Kleinberg, Szegedy, Umans (2005)

» Uses Wedderburn's Theorem to reduce matmul to FFT.

» Equals Coppersmith & Winograd, beating it depends on
finding right groups.

> New results (Demmel, Dumitriu, Holtz, Kleinberg, 2006)

» Above algorithm is stable (normwise).

> Any O(n®) algorithm can converted to a stable one (based on
Raz, 2003)

» There are stable algorithms for QR, LU, solve, determinant
costing O(n®) or O(n®*¢) for any ¢ > 0.

1 !, = =

rey Hirda Meoving T apacrie +a Hicher Precician withant ton miich Wark

e

Part Il
Thomas Wolf, Winfried Neun

Zuse Institute Berlin

MSRI Workshop Feb2007/

Cray Vector Machines 1986..

Cray MPP (using PVM) 1995..
RISC workstation networks 1998..
Brock Beowulf cluster 2002..

4

Sharcnet ‘s Opteron clusters 2005 ...

computer algebra calculations on whatever

hardware the computing centre people just recently
bought. Nobody buys a huge machine for CA today.
* Coarse grain parallelism / Cray vector assembler c.
* Dedicated to some challenging applications e.g.
Grobner bases, QE (RedLog, U Passau) Crack
(TW, Brock U)

S -

* Adapting to available machine models SPMD
/MPMD, clusters etc. Playstation??

* We use PVM (Oak Ridge Nat.Lab.) and LISP

* Using more than one CA system. We added
interfaces to Singular (U. Kaiserslautern) and
Gb (J.-C. Faugere), others ad libitum.

‘Auf Wiedersehen’ etc..

* Use standards like OpenMath or MathML!

* Make parallel operation available at user

evel ‘algebraic mode’.

° Interactive use, e.g. creating processes on
user demand: “create_process’,
send/receive,kill_process

* Dynamic behaviour, i.e. the number of used

processors/cores is not determined at startup

* Interactive parallel computation is a night-
mare for the administrators in the computer
centres

* Ability to quickly adapt to local needs, e.g.

PVM, MPI, gsub (batch steps) is important

Kathy Yelick’s remark on the different nature

of symbolic applications.

PVM does the dirty job of spawning tasks,
finding a free node, transport layer. Binary

transport of LISP data.

We have the job to serialize LISP structures

and forward them to the nodes. This requires

1

a system ‘in hand’

We are trying to solve problems which have
not been soluble so far. In some cases we
have been successul.

To do:
Threads, Mult Cores,Cell processors, ..

Reentrant LISP code must be fun!

Thank you for your attention !

