Note Taker Checklist Form -MSR/J

E-mail Address/ Phone #: (S ’“D (o (Y,

{

Talk Title and Workshop assigned to: d P s
1 N b 2 L “/ 9 b - ¢ [o rf\"b‘. A\? , A " B $ 3{ (~
n A s (e [/ ? T
N e, Fermerly Vumber |
3 e ' 7 7
Lecturer (Fullhame): Ton fy (abon /

Date & Timeof Event: | 307 » Jon & 200 %

Check List:
(/) Introduce yourself to the lecturer prior to lecture. Tell them that you will be
the note taker, and that you will need to make copies of their own notes, if
any.

~ {) , Obtain all presentation materials from lecturer (i.e. Power Point files, etc).
(<N \ This can be done either before the lecture is to begin or after the lecture;

‘please make arrangements with the lecturer as to whe this.

(/)/ ~ Take down all notes from media provided (blackboard, overhead, etc.)
() ,,/'Gather all other lecture materials (i.e. Handouts, etc.)

(f/)/ Scan all materials'on PDF scanner in 2 floor lab (assistance can be
provided by Computing Staff) — Scan this sheet first, then materials. In the
subject heading, enter the name of the speaker and date of their talk.

Please do NOT use pencil or colored pens other than black when taking notes as the
scanner has a difficult time scanning pencil and other colors.

Please fill in the following after the lecture is done:

1. List 6-12 lecture keywords: / lel ithremCriVe wis | y
4 Aa — ' = yT— 1 /
U / ’.“ g’ \ \‘ © 'f { Fo s in N
wfle g - y 2 < iR Mg
2. Please summarize the lecture in 5 or less sentences. i ox
What =hi] Combunidy Wanks
wiy [maffp toils Arel ag lalnle
0/ Hhe CASLAL M5 @

Once the materials on check list above are gathered, please scan ALL materials and send to the
Computing Departiment. Return this form to Larry Patague, Head of Computing (rin 2i14)

For Video Tapings-MSRI 9/2006

1445 p.m.
Parallel Computation Tools for Research: A Wish List
Henry Cohn

No technical content. Just a springboard for discussions.
Cohn is a user, not an expert in parallel computation.

Large computations are increasingly important in mathematics. Computer-
assistend proofs. GIMPS

Often embarassing parallelizable. Usually carried out by ad hoc means.
Lots of things that non-experts would like to do b/c barriers are just
slightly too high.

We shouldn't build more powerful and sophisticated tools (all the time),
but also focus on easy-to-use-for-everyone tools.

Three Scenarios:

1) GIMPS model of recruiting many volunteers

2) Use among collaborators simply for organizing a large-scale
computation. (more concerned about)

3) Use on multicore computers.

It's a real pain to get parallel computing up and running.

BOINC is a nice system set up to manage many computers, but not good for
the casual user.

If you limit yourself to simple programming in a common file system
amongst computers to pass information back and forth, you can't just
scale past that file system.

What we really need is a flexible system for automating distribution
over many computers (only when trivially parallelizable)

The particular problems in mind are not low-latency, fine-grain
problems.

Many assumptions are being made behind the curtain here. Assuming
that these problems will be similar to most of the

problems that other general users will encounter.

Server must be trivial to set up. No communication between clients.
Clients can download and return answer or fail.
Problem times out if client times out. Authentication can be required

for ¢lients.

There are some open Darwin-based things that are already doing
this, it seems.

What this wishlist is concerned with is generalizing this to run
on a heterogeneous system and a few other things.

Changing this to an easy-to-use system is one of the biggest
goals.

Authentication problem with TCP/IP.

Usage: Random volutneer arrays can cause a lot more problems than
they're worth for the common user—--mostly arising from

issues of safety and authentication. We don't have to create a massive
framework to achieve most of our goals.

Issues for clients: Malicious code, stability, resource hogging,
suspendability.
Critical for any volunteer or corporate users.

Sees only cne realistic option: Sacrifice some overhead to run these
calculations on a virtual machine.
Users don't have to worry (as long as there is a reasonable
implementation of a virtual machine) about security issues.
Can be suspended at will.
This is "virtual machine” in the sense that we have a self-contained
running environment that never escapes to the computer.
This is no sinecure, but can reduce worries.

The idea is that people are always going to want to exceed the
resources they have available.

Virtual machines are not always slower. SAGE runs more quickly in
0S X or Windows with a Linux VM.

Spammers may want to use this for malicious spam-oriented
purposes. Feels like there's not too big of a risk.

One vision for the future: Log into a server, get a list of jobs
running on the server, select which job(s) to join.

Server: DDoS attacks seem to be primary risk. Do what we always do.

Tampering with results: Mischief (user shows up with bogus answers)

Sabotage (users flood bogus answers to corrupt research calculations)

Fraud (exaggeration)

——It is unclear exactly how much we can deal with these problems.
—Consistency checks. Farm out problem to several clients to check

answers. Ask about CPU time, resource use, etc.

Risks of tampering depend on anonymity.
Use of anonymous volunteers almost always invites certain risks due to
the anonymity.

Should we trust code blindly? It -should- be okay, but errors can
crop up even in "good" code.

Volunteers and the program(s) should always be credited. If anyone made
a critical contribution, they should be individually

acknowledged as well. The finer details of this should be left to
community consensus.

Should there be a cutoff for acknowledgement? If you provide 10%
of the computing power, should you be credited

individually? It could turn off individual users, since those
10%'s will be provided by clients with supercomputers.

How do we measure the "computing power?"

Maybe the clients can make demands from the server; make the
server enter into an agreement where if the client

provides enough, the client will be credited.

A community consensus would be nice, but these other options are
flexible.

Within 10 years, the principal application will be massively multicore
machines. We don't even know how to build a good
computer algebra system for one of these machines.

Speculative execution? If the user starts typing in a function, will
some of the cores start plotting the function? Start

calculating other things about the function? Then, if the user wants
any of that, it will already be computed.

